Advertisement

Science China Materials

, Volume 62, Issue 12, pp 1788–1797 | Cite as

Vibration uncoupling of germanium with different valence states lowers thermal conductivity of Cs2Ge3Ga6Se14

  • Ni Ma (马妮)
  • Lin Xiong (熊琳)
  • Ling Chen (陈玲)Email author
  • Li-Ming Wu (吴立明)Email author
Articles

Abstract

The thermal phonon transport is a key matter for heat managing in materials science which is crucial for device miniaturization and power density increase. Herein, we report the synthesis, structure and characterization of a new compound, Cs2Ge3Ga6Se14, with a unique anisotropic structure simultaneously containing Ge3+ and Ge2+ that adopt (Ge1)3+2Se6 dimer or (Ge2)2+Se6 octahedron, respectively. The thermal conductivity was measured to be 0.57–0.48 W m−1 K−1 from 323 to 773 K, the lowest value among all the known Ge containing compounds, approaching its glass limit according to the Cahill’s formulation. More importantly, we discover for the first time that the vibration uncoupling of Ge with different valence states hinders the effective thermal energy transport between the (Ge1)3+2Se6 dimer and (Ge2)2+Se6 octahedron, and consequently lowers the thermal conductivity. In addition, we propose a structure factor fi = sin(180 − β) × dGe−Q/li (i = A, B), with which a structure map of the Cs2Ge3M6Q14 family is given.

Keywords

Cs2Ge3Ga6Se14 mixed valence states compound thermal conductivity phonon transport crystallography analyses 

低热导率新机制—Cs2Ge3Ga6Se14中异价锗离子的振动弱耦合性

摘要

热管理是电子器件小型化和功率密度提高的关键, 因此研究材料热输运性质及声子传输机制具有非常重要的意义. 本文报道了一例含多价态锗(Ge3+, Ge2+)的新型硒化物, Cs2Ge3Ga6Se14. 单晶结构衍射数据表明, 化合物中不同价态锗分别采用(Ge3+)2Se6二聚体或(Ge2+)Se6八面体的配位模式, 323–773 K范围内, 其热导率测试值为0.57–0.48 W m−1 K−1, 该值是目前已知含锗固体材料中的最低值, 接近其玻璃态极限值. 更重要的是, 我们发现由于不同价态锗离子振动模式之间存在弱耦合性, 使得热振动能量无法在两种结构单元之间有效传递, 从而降低了化合物热导率. 这种机制在材料热导率研究领域尚属首次发现. 本文还通过结构因子fi=sin(180−βdGe−O/li (i=A, B)的大小, 给出了Cs2Ge3M6Q14家族的晶体结构分布规律.

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China (21975032 and 21571020), and the National Key Research and Development Program of China (2018YFA0702100). The room temperature ultrasonic pulse echo measurements were performed by Dr. Yu Xiao and Prof. Li-Dong Zhao from the School of Materials Science and Engineering, Beihang University, Beijing, China. Their great help was sincerely appreciated.

Conflict of interest The authors declare no conflict of interest.

Supplementary material

40843_2019_1192_MOESM1_ESM.pdf (1.1 mb)
Vibration Uncoupling of Germanium with Different Valence States Lowers Thermal Conductivity of Cs2Ge3Ga6Se14

References

  1. 1.
    Xu X, Chen J, Li B. Phonon thermal conduction in novel 2D materials. J Phys-Condens Matter, 2016, 28: 483001–483021Google Scholar
  2. 2.
    Ummadisingu A, Steier L, Seo JY, et al. The effect of illumination on the formation of metal halide perovskite films. Nature, 2017, 545: 208–212Google Scholar
  3. 3.
    Island JO, Molina-Mendoza AJ, Barawi M, et al. Electronics and optoelectronics of quasi-1D layered transition metal trichalcogenides. 2D Mater, 2017, 4: 022003Google Scholar
  4. 4.
    Chung DY, Hogan T, Brazis P, et al. CsBi4Te6: a high-performance thermoelectric material for low-temperature applications. Science, 2000, 287: 1024–1027Google Scholar
  5. 5.
    Hsu KF, Loo S, Guo F, et al. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science, 2004, 303: 818–821Google Scholar
  6. 6.
    Tan G, Shi F, Hao S, et al. Codoping in SnTe: enhancement of thermoelectric performance through synergy of resonance levels and band convergence. J Am Chem Soc, 2015, 137: 5100–5112Google Scholar
  7. 7.
    Soni A, Shen Y, Yin M, et al. Interface driven energy filtering of thermoelectric power in spark plasma sintered Bi2Te2.7Se0.3 nanoplatelet composites. Nano Lett, 2012, 12: 4305–4310Google Scholar
  8. 8.
    Zhou C, Lee YK, Cha J, et al. Defect engineering for high-performance n-type PbSe thermoelectrics. J Am Chem Soc, 2018, 140: 9282–9290Google Scholar
  9. 9.
    Li Z, Xiao C, Zhu H, et al. Defect chemistry for thermoelectric materials. J Am Chem Soc, 2016, 138: 14810–14819Google Scholar
  10. 10.
    Biswas K, He J, Blum ID, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012, 489: 414–418Google Scholar
  11. 11.
    Zhao LD, Dravid VP, Kanatzidis MG. The panoscopic approach to high performance thermoelectrics. Energy Environ Sci, 2014, 7: 251–268Google Scholar
  12. 12.
    Chen YK, Chen MC, Zhou LJ, et al. Syntheses, structures, and nonlinear optical properties of quaternary chalcogenides: Pb4Ga4GeQ12 (Q = S, Se). Inorg Chem, 2013, 52: 8334–8341Google Scholar
  13. 13.
    Li G, Wu K, Liu Q, et al. Na2ZnGe2S6: A new infrared nonlinear optical material with good balance between large second-harmonic generation response and high laser damage threshold. J Am Chem Soc, 2016, 138: 7422–7428Google Scholar
  14. 14.
    Mei D, Yin W, Feng K, et al. LiGaGe2Se6: A new IR nonlinear optical material with low melting point. Inorg Chem, 2012, 51: 1035–1040Google Scholar
  15. 15.
    Li GM, Liu Q, Wu K, et al. Na2CdGe2Q6 (Q = S, Se): two metal-mixed chalcogenides with phase-matching abilities and large second-harmonic generation responses. Dalton Trans, 2017, 46: 2778–2784Google Scholar
  16. 16.
    Feng K, Wang W, He R, et al. K2FeGe3Se8: A new antiferromagnetic iron selenide. Inorg Chem, 2013, 52: 2022–2028Google Scholar
  17. 17.
    Lin Z, Li C, Kang L, et al. SnGa2GeS6: synthesis, structure, linear and nonlinear optical properties. Dalton Trans, 2015, 44: 7404–7410Google Scholar
  18. 18.
    Aitken JA, Larson P, Mahanti SD, et al. Li2PbGeS4 and Li2EuGeS4: Polar chalcopyrites with a severe tetragonal compression. Chem Mater, 2001, 13: 4714–4721Google Scholar
  19. 19.
    McGuire MA, Scheidemantel TJ, Badding JV, et al. Tl2AXTe4 (A = Cd, Hg, Mn; X = Ge, Sn): Crystal structure, electronic structure, and thermoelectric properties. Chem Mater, 2005, 17: 6186–6191Google Scholar
  20. 20.
    Li G, Zhen N, Chu Y, et al. Li3Ge3Se6: the first ternary lithium germanium selenide with interesting [Ge6Se12]n chains constructed by ethane-like [Ge2Se6]6− clusters. Dalton Trans, 2017, 46: 16399–16403Google Scholar
  21. 21.
    Wu K, Yang Z, Pan S. Na4MgM2Se6 (M = Si, Ge): The first non-centrosymmetric compounds with special ethane-like [M2Se6]6− units exhibiting large laser-damage thresholds. Inorg Chem, 2015, 54: 10108–10110Google Scholar
  22. 22.
    Cui Y, Assoud A, Kleinke H. Synthesis and structural and physical properties of new semiconducting quaternary tellurides: Ba4Ag3.95Ge2Te9 and Ba4Cu3.71Ge2Te9. Inorg Chem, 2009, 48: 5313–5319Google Scholar
  23. 23.
    Choudhury A, Strobel S, Martin BR, et al. Synthesis of a family of solids through the building-block approach: A case study with Ag+ substitution in the ternary Na-Ge-Se system ChemInform, 2007, 38Google Scholar
  24. 24.
    Choudhury A, Ghosh K, Grandjean F, et al. Structural, optical, and magnetic properties of Na8Eu2(Si2S6)2 and Na8Eu2(Ge2S6)2: Europium(II) quaternary chalcogenides that contain an ethane-like (Si2S6)6− or (Ge2S6)6− moiety. J Solid State Chem, 2015, 226: 74–80Google Scholar
  25. 25.
    Marking GA, Kanatzidis MG. The ethane-like [Ge2S6]6− and (Si2Se6)6− metals in Na8Pb2[Ge2S6]2, Na8Sn2[Ge2S6]2, and Na8Pb2[Si2Se6]2. J Alloys Compd, 1997, 259: 122–128Google Scholar
  26. 26.
    Wu X, Hu Y, Pan H, et al. Na9Sb(Ge2Q6)2 (Q = S, Se): two new antimony(III) quaternary chalcogenides with ethane-like [Ge2Q6]6− ligands. RSC Adv, 2016, 6: 99475–99481Google Scholar
  27. 27.
    Zhang CY, Zhou LJ, Chen L. Quaternary tellurides with different valent Ge centers: Cs2Ge3M6Te14 (M = Ga, In). Inorg Chem, 2012, 51: 7007–7009Google Scholar
  28. 28.
    Palchik O, Marking GM, Kanatzidis MG. Exploratory synthesis in molten salts: Role of flux basicity in the stabilization of the complex thiogermanates Cs4Pb4Ge5S16, K2PbGe2S6, and K4Sn3Ge3S14. Inorg Chem, 2005, 44: 4151–4153Google Scholar
  29. 29.
    Poling SA, Nelson CR, Sutherland JT, et al. Crystal structure of thiogermanic acid H4Ge4S10. Inorg Chem, 2003, 42: 7372–7374Google Scholar
  30. 30.
    Wu YY, Xiong L, Jia F, et al. Cs2Ge3In6Se14: A structure transformation driven by the size preference and its properties. Inorg Chem, 2018, 57: 4667–4672Google Scholar
  31. 31.
    Sheldrick GM. SHELXTL, version 5.1. Bruker-AXS: Madison, WI, 1998Google Scholar
  32. 32.
    Spek AL. Single-crystal structure validation with the program PLATON. J Appl Crystlogr, 2003, 36: 7–13Google Scholar
  33. 33.
    Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186Google Scholar
  34. 34.
    Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868Google Scholar
  35. 35.
    Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59: 1758–1775Google Scholar
  36. 36.
    Blöchl PE. Projector augmented-wave method. Phys Rev B, 1994, 50: 17953–17979Google Scholar
  37. 37.
    Parliñski K. Software phonon, cracow (2001) as implemented in medeA 2.2. Materials Design, Angel Fire, New Mexico, 2005Google Scholar
  38. 38.
    Anderson MW, Gebbie-Rayet JT, Hill AR, et al. Predicting crystal growth via a unified kinetic three-dimensional partition model. Nature, 2017, 544: 456–459Google Scholar
  39. 39.
    Rak M, Izdebski M, Brozi A. Kinetic Monte Carlo study of crystal growth from solution. Comput Phys Commun, 2001, 138: 250–263Google Scholar
  40. 40.
    Cuppen HM, van Veenendaal E, van Suchtelen J, et al. A Monte Carlo study of dislocation growth and etching of crystals. J Cryst Growth, 2000, 219: 165–175Google Scholar
  41. 41.
    Wei L, Lv X, Yang Y, et al. Theoretical investigation on the microscopic mechanism oflattice thermal conductivity of ZnXP2 (X = Si, Ge, and Sn). Inorg Chem, 2019, 58: 4320–4327Google Scholar
  42. 42.
    Garg J, Bonini N, Marzari N. High thermal conductivity in short-period superlattices. Nano Lett, 2011, 11: 5135–5141Google Scholar
  43. 43.
    Shaabani L, Aminorroaya-Yamini S, Byrnes J, et al. Thermoelectric performance of Na-doped GeSe. ACS Omega, 2017, 2: 9192–9198Google Scholar
  44. 44.
    Ibáñez M, Zamani R, LaLonde A, et al. Cu2ZnGeSe4 nanocrystals: Synthesis and thermoelectric properties. J Am Chem Soc, 2012, 134: 4060–4063Google Scholar
  45. 45.
    Perez CJ, Bates VJ, Kauzlarich SM. Hydride synthesis and thermoelectric properties of type-I clathrate K8E8Ge38 (E = Al, Ga, In). Inorg Chem, 2019, 58: 1442–1450Google Scholar
  46. 46.
    Pavan Kumar V, Paradis-Fortin L, Lemoine P, et al. Designing a thermoelectric copper-rich sulfide from a natural mineral: Synthetic germanite Cu22Fe8Ge4S32. Inorg Chem, 2017, 56: 13376–13381Google Scholar
  47. 47.
    Nuss J, Wedig U, Xie W, et al. Phosphide-tetrahedrite Ag6Ge10P12: Thermoelectric performance of a long-forgotten silver-cluster compound. Chem Mater, 2017, 29: 6956–6965Google Scholar
  48. 48.
    Fu J, Su X, Zheng Y, et al. Thermoelectric properties of Ga/Ag codoped type-III Ba24Ge100 clathrates with in situ nanostructures. ACS Appl Mater Interfaces, 2015, 7: 19172–19178Google Scholar
  49. 49.
    Heinrich CP, Day TW, Zeier WG, et al. Effect of isovalent subs0titution on the thermoelectric properties of the Cu2ZnGeSe4−xSx series of solid solutions. J Am Chem Soc, 2014, 136: 442–448Google Scholar
  50. 50.
    Chen H, Chen YK, Lin H, et al. Quaternary layered semiconductor Ba2Cr4GeSe10: Synthesis, crystal structure, and thermoelectric properties. Inorg Chem, 2018, 57: 916–920Google Scholar
  51. 51.
    Kurosaki K, Kosuga A, Muta H, et al. Ag9TlTe5: A high-performance thermoelectric bulk material with extremely low thermal conductivity. Appl Phys Lett, 2005, 87: 061919Google Scholar
  52. 52.
    Wan CL, Pan W, Xu Q, et al. Effect of point defects on the thermal transport properties of (LaxGd1−x)2Zr2O7: Experiment and theoretical model. Phys Rev B, 2006, 74: 144109Google Scholar
  53. 53.
    Liu H, Shi X, Xu F, et al. Copper ion liquid-like thermoelectrics. Nat Mater, 2012, 11: 422–425Google Scholar
  54. 54.
    Ouyang T, Zhang X, Hu M. Thermal conductivity of ordered-disordered material: a case study of superionic Ag2Te. Nanotechnology, 2015, 26: 025702Google Scholar
  55. 55.
    Jiang B, Qiu P, Eikeland E, et al. Cu8GeSe6-based thermoelectric materials with an argyrodite structure. J Mater Chem C, 2017, 5: 943–952Google Scholar
  56. 56.
    Zhao LD, Lo SH, Zhang Y, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508: 373–377Google Scholar
  57. 57.
    Skoug EJ, Cain JD, Morelli DT. Structural effects on the lattice thermal conductivity of ternary antimony- and bismuth-containing chalcogenide semiconductors. Appl Phys Lett, 2010, 96: 181905Google Scholar
  58. 58.
    Cahill DG, Watson SK, Pohl RO. Lower limit to the thermal conductivity of disordered crystals. Phys Rev B, 1992, 46: 6131–6140Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Beijing Key Laboratory of Energy Conversion and Storage Materials, College of ChemistryBeijing Normal UniversityBeijingChina
  2. 2.Key Laboratory of Theoretical and Computational Chemistry of Ministry of Education, College of ChemistryBeijing Normal UniversityBeijingChina

Personalised recommendations