Biocompatible metal-free organic phosphorescent nanoparticles for efficiently multidrug-resistant bacteria eradication

  • Shan Wang (王姗)
  • Miao Xu (徐淼)
  • Kaiwei Huang (黄凯薇)
  • Jiahuan Zhi (支佳欢)
  • Chen Sun (孙晨)
  • Kai Wang (王楷)
  • Qian Zhou (周倩)
  • Lingling Gao (高玲玲)
  • Qingyan Jia (贾庆岩)
  • Huifang Shi (史慧芳)Email author
  • Zhongfu An (安众福)Email author
  • Peng Li (李鹏)Email author
  • Wei Huang (黄维)


Organic phosphorescence materials with longlived triplet excitons that can highly generate active singlet oxygen (1O2) through the energy transfer with the molecular oxygen under photoexcitation, serve as highly efficient antibacterial agent. Herein, we report bright red-emissive organic phosphorescent nanoparticles (PNPs) based on a metal-free organic phosphor encapsulated with biocompatible block copolymers. The obtained PNPs with an ultra-small particle size of around 5 nm and a long emission lifetime of up to 167 µs showed effective 1O2 generation ability under visible light (410 nm) excitation in aqueous media, which can efficiently eradicate multi-drug resistant bacteria both in vitro and in vivo. This is the first demonstration of metal-free organic PNPs for photodynamic antimicrobial therapy, expanding the application scope of metal-free organic room temperature phosphorescent materials.


organic phosphorescence singlet oxygen antimicrobial photodynamic therapy multidrug-resistant bacterium 

具有生物相容性的纯有机磷光纳米粒子有效杀灭 耐药细菌


具有长寿命三线态激子的有机磷光材料在光激发下, 通过与 分子氧的能量传递可产生高活性的单线态氧(1O2), 该单线态氧具 有抗菌能力. 然而, 传统的有机金属磷光材料的高毒性严重限制了 它们在生物医学领域的实际应用. 相较于金属有机材料, 不含金属 的纯有机磷光纳米粒子具有良好的水分散性和生物相容性, 可作 为抗菌材料被重点研究. 本文以无金属有机磷光粉DBCz-BT(4,7- 二溴-5,6-二(9H-咔唑-9-酰基)苯并[c][1,2,5]噻二唑)为原料, 并利用 具有生物相容性的嵌段共聚物将其包裹, 成功制备了具有红色室 温磷光发射的纳米粒子. 该纳米粒子分散在水溶液中的粒径约为 5 nm, 磷光寿命可达167 μs, 同时具有高效的单线态氧产生能力. 这些独特的性质使得该纳米粒子可以在体外和体内有效地杀灭多 重耐药细菌. 本文首次将无金属纯有机磷光纳米粒子用于光动力 抗菌 治疗领域, 扩大了无金属有机室温磷光材料的应用范围.



This work was supported by the National Key R&D Program of China (2018YFC1105402 and 2017YFA0207202), the National Natural Science Foundation of China (21975120, 21875104, 51673095 and 21875189), the National Basic Research Program of China (973 Program, 2015CB932200), the Natural Science Fund for Distinguished Young Scholars of Jiangsu Province (BK20180037), the Natural Science Fund for Colleges and Universities of Jiangsu Province (17KJB430020), and the Key R&D Program of Jiangsu Province (BE2017740).

Supplementary material

40843_2019_1191_MOESM1_ESM.pdf (461 kb)
Supporting data are available in the online version of the paper.


  1. 1.
    Kabe R, Notsuka N, Yoshida K, et al. Afterglow organic lightemitting diode. Adv Mater, 2016, 28: 655–660CrossRefGoogle Scholar
  2. 2.
    Zhen X, Tao Y, An Z, et al. Ultralong phosphorescence of watersoluble organic nanoparticles for in vivo afterglow imaging. Adv Mater, 2017, 29: 1606665–1606671CrossRefGoogle Scholar
  3. 3.
    Fateminia SMA, Mao Z, Xu S, et al. Organic nanocrystals with bright red persistent room-temperature phosphorescence for biological applications. Angew Chem Int Ed, 2017, 56: 12160–12164CrossRefGoogle Scholar
  4. 4.
    Shi H, Ma X, Zhao Q, et al. Ultrasmall phosphorescent polymer dots for ratiometric oxygen sensing and photodynamic cancer therapy. Adv Funct Mater, 2014, 24: 4823–4830CrossRefGoogle Scholar
  5. 5.
    DeRosa CA, Seaman SA, Mathew AS, et al. Oxygen sensing difluoroboron ß-diketonate polylactide materials with tunable dynamic ranges for wound imaging. ACS Sens, 2016, 1: 1366–1373CrossRefGoogle Scholar
  6. 6.
    Lehner P, Staudinger C, Borisov SM, et al. Ultra-sensitive optical oxygen sensors for characterization of nearly anoxic systems. Nat Commun, 2015, 5: 4460–4466CrossRefGoogle Scholar
  7. 7.
    Cheng Z, Shi H, Ma H, et al. Ultralong phosphorescence from organic ionic crystals under ambient conditions. Angew Chem Int Ed, 2018, 57: 678–682CrossRefGoogle Scholar
  8. 8.
    Wu Q, Ma H, Ling K, et al. Reversible ultralong organic phosphorescence for visual and selective chloroform detection. ACS Appl Mater Interfaces, 2018, 10: 33730–33736CrossRefGoogle Scholar
  9. 9.
    Yang Z, Mao Z, Zhang X, et al. Intermolecular electronic coupling of organic units for efficient persistent room-temperature phosphorescence. Angew Chem Int Ed, 2016, 55: 2181–2185CrossRefGoogle Scholar
  10. 10.
    Wei J, Liang B, Duan R, et al. Induction of strong long-lived roomtemperature phosphorescence of N-phenyl-2-naphthylamine molecules by confinement in a crystalline dibromobiphenyl matrix. Angew Chem Int Ed, 2016, 55: 15589–15593CrossRefGoogle Scholar
  11. 11.
    Yu Z, Wu Y, Xiao L, et al. Organic phosphorescence nanowire lasers. J Am Chem Soc, 2017, 139: 6376–6381CrossRefGoogle Scholar
  12. 12.
    Hirata S, Totani K, Yamashita T, et al. Large reverse saturable absorption under weak continuous incoherent light. Nat Mater, 2014, 13: 938–946CrossRefGoogle Scholar
  13. 13.
    Lo KKW, Louie MW, Zhang KY. Design of luminescent iridium (III) and rhenium(I) polypyridine complexes as in vitro and in vivo ion, molecular and biological probes. Coord Chem Rev, 2010, 254: 2603–2622CrossRefGoogle Scholar
  14. 14.
    Schulte TR, Holstein JJ, Krause L, et al. Chiral-at-metal phosphorescent square-planar Pt(II)-complexes from an achiral organometallic ligand. J Am Chem Soc, 2017, 139: 6863–6866CrossRefGoogle Scholar
  15. 15.
    Xia Z, Meijerink A. Ce3+-doped garnet phosphors: Composition modification, luminescence properties and applications. Chem Soc Rev, 2017, 46: 275–299CrossRefGoogle Scholar
  16. 16.
    Xu H, Chen R, Sun Q, et al. Recent progress in metal-organic complexes for optoelectronic applications. Chem Soc Rev, 2014, 43: 3259–3302CrossRefGoogle Scholar
  17. 17.
    An Z, Zheng C, Tao Y, et al. Stabilizing triplet excited states for ultralong organic phosphorescence. Nat Mater, 2015, 14: 685–690CrossRefGoogle Scholar
  18. 18.
    Shi H, Song L, Ma H, et al. Highly efficient ultralong organic phosphorescence through intramolecular-space heavy-atom effect. J Phys Chem Lett, 2019, 10: 595–600CrossRefGoogle Scholar
  19. 19.
    Cai S, Shi H, Li J, et al. Visible-light-excited ultralong organic phosphorescence by manipulating intermolecular interactions. Adv Mater, 2017, 29: 1701244–1701249CrossRefGoogle Scholar
  20. 20.
    Gu L, Shi H, Gu M, et al. Dynamic ultralong organic phosphorescence by photoactivation. Angew Chem Int Ed, 2018, 57: 8425–8431CrossRefGoogle Scholar
  21. 21.
    Cai S, Shi H, Zhang Z, et al. Hydrogen-bonded organic aromatic frameworks for ultralong phosphorescence by intralayer p-p interactions. Angew Chem Int Ed, 2018, 57: 4005–4009CrossRefGoogle Scholar
  22. 22.
    Gu L, Shi H, Bian L, et al. Colour-tunable ultra-long organic phosphorescence of a single-component molecular crystal. Nat Photonics, 2019, 13: 406–411CrossRefGoogle Scholar
  23. 23.
    Gu L, Shi H, Miao C, et al. Prolonging the lifetime of ultralong organic phosphorescence through dihydrogen bonding. J Mater Chem C, 2018, 6: 226–233CrossRefGoogle Scholar
  24. 24.
    Cai S, Shi H, Tian D, et al. Enhancing ultralong organic phosphorescence by effective p-type halogen bonding. Adv Funct Mater, 2018, 28: 1705045–1705051CrossRefGoogle Scholar
  25. 25.
    Yuan WZ, Shen XY, Zhao H, et al. Crystallization-induced phosphorescence of pure organic luminogens at room temperature. J Phys Chem C, 2010, 114: 6090–6099Google Scholar
  26. 26.
    Bolton O, Lee K, Kim HJ, et al. Activating efficient phosphorescence from purely organic materials by crystal design. Nat Chem, 2011, 3: 205–210CrossRefGoogle Scholar
  27. 27.
    Yang J, Zhen X, Wang B, et al. The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens. Nat Commun, 2018, 9: 840–849CrossRefGoogle Scholar
  28. 28.
    Chen J, Yu T, Ubba E, et al. Achieving dual-emissive and timedependent evolutive organic afterglow by bridging molecules with weak intermolecular hydrogen bonding. Adv Opt Mater, 2019, 7: 1801593–1801599CrossRefGoogle Scholar
  29. 29.
    Bian L, Shi H, Wang X, et al. Simultaneously enhancing efficiency and lifetime of ultralong organic phosphorescence materials by molecular self-assembly. J Am Chem Soc, 2018, 140: 10734–10739CrossRefGoogle Scholar
  30. 30.
    Hirata S, Totani K, Zhang J, et al. Efficient persistent room temperature phosphorescence in organic amorphous materials under ambient conditions. Adv Funct Mater, 2013, 23: 3386–3397CrossRefGoogle Scholar
  31. 31.
    Kwon MS, Lee D, Seo S, et al. Tailoring intermolecular interactions for efficient room-temperature phosphorescence from purely organic materials in amorphous polymer matrices. Angew Chem Int Ed, 2014, 53: 11177–11181CrossRefGoogle Scholar
  32. 32.
    Louis M, Thomas H, Gmelch M, et al. Blue-light-absorbing thin films showing ultralong room-temperature phosphorescence. Adv Mater, 2019, 31: 1807887–1807891CrossRefGoogle Scholar
  33. 33.
    Hirata S, Vacha M. White afterglow room-temperature emission from an isolated single aromatic unit under ambient condition. Adv Opt Mater, 2017, 5: 1600996–1601006CrossRefGoogle Scholar
  34. 34.
    Ogoshi T, Tsuchida H, Kakuta T, et al. Ultralong room-temperature phosphorescence from amorphous polymer poly(styrene sulfonic acid) in air in the dry solid state. Adv Funct Mater, 2018, 28: 1707369–1707375CrossRefGoogle Scholar
  35. 35.
    Zhang G, Palmer GM, Dewhirst MW, et al. A dual-emissive-materials design concept enables tumour hypoxia imaging. Nat Mater, 2009, 8: 747–751CrossRefGoogle Scholar
  36. 36.
    Chen H, Yao X, Ma X, et al. Amorphous, efficient, room-temperature phosphorescent metal-free polymers and their applications as encryption ink. Adv Opt Mater, 2016, 4: 1397–1401CrossRefGoogle Scholar
  37. 37.
    Ma X, Xu C, Wang J, et al. Amorphous pure organic polymers for heavy-atom-free efficient room-temperature phosphorescence emission. Angew Chem, 2018, 130: 11020–11024CrossRefGoogle Scholar
  38. 38.
    Koch M, Perumal K, Blacque O, et al. Metal-free triplet phosphors with high emission efficiency and high tunability. Angew Chem Int Ed, 2014, 53: 6378–6382CrossRefGoogle Scholar
  39. 39.
    Yang J, Ren Z, Xie Z, et al. AIEgen with fluorescence-phosphorescence dual mechanoluminescence at room temperature. Angew Chem Int Ed, 2017, 56: 880–884CrossRefGoogle Scholar
  40. 40.
    Wang XF, Xiao H, Chen PZ, et al. Pure organic room temperature phosphorescence from excited dimers in self-assembled nanoparticles under visible and near-infrared irradiation in water. J Am Chem Soc, 2019, 141: 5045–5050CrossRefGoogle Scholar
  41. 41.
    Wang J, Gu X, Ma H, et al. A facile strategy for realizing room temperature phosphorescence and single molecule white light emission. Nat Commun, 2018, 9: 2963–2971CrossRefGoogle Scholar
  42. 42.
    Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: The who priority list of antibioticresistant bacteria and tuberculosis. Lancet Infect Dis, 2018, 18: 318–327CrossRefGoogle Scholar
  43. 43.
    Christou A, Aguera A, Bayona JM, et al. The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes—A review. Water Res, 2017, 123: 448–467CrossRefGoogle Scholar
  44. 44.
    Kumar P, Kizhakkedathu JN, Straus SK. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules, 2018, 8: 4CrossRefGoogle Scholar
  45. 45.
    Zhang D, Qian Y, Zhang S, et al. Alpha-beta chimeric polypeptide molecular brushes display potent activity against superbugs-methicillin resistant staphylococcus aureus. Sci China Mater, 2019, 62: 604–610CrossRefGoogle Scholar
  46. 46.
    Fumery M, Singh S, Dulai PS, et al. Natural history of adult ulcerative colitis in population-based cohorts: A systematic review. Clin Gastroenterol Hepatol, 2018, 16: 343–356CrossRefGoogle Scholar
  47. 47.
    Miller-Ensminger T, Garretto A, Brenner J, et al. Bacteriophages of the urinary microbiome. J Bacteriol, 2018, 200: 365–373CrossRefGoogle Scholar
  48. 48.
    Zheng K, Setyawati MI, Leong DT, et al. Antimicrobial silver nanomaterials. Coord Chem Rev, 2018, 357: 1–17CrossRefGoogle Scholar
  49. 49.
    Lam SJ, O’Brien-Simpson NM, Pantarat N, et al. Combating multidrug-resistant gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nat Microbiol, 2016, 1: 16162CrossRefGoogle Scholar
  50. 50.
    Panacek A, Kvitek L, Smekalova M, et al. Bacterial resistance to silver nanoparticles and how to overcome it. Nat Nanotech, 2018, 13: 65–71CrossRefGoogle Scholar
  51. 51.
    Klose CSN, Artis D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat Immunol, 2016, 17: 765–774CrossRefGoogle Scholar
  52. 52.
    Lu LL, Suscovich TJ, Fortune SM, et al. Beyond binding: Antibody effector functions in infectious diseases. Nat Rev Immunol, 2018, 18: 46–61CrossRefGoogle Scholar
  53. 53.
    Li Y, Liu X, Tan L, et al. Rapid sterilization and accelerated wound healing using Zn2+ and graphene oxide modified g-C3N4 under dual light irradiation. Adv Funct Mater, 2018, 28: 1800299–1800310CrossRefGoogle Scholar
  54. 54.
    Zhang X, Xia LY, Chen X, et al. Hydrogel-based phototherapy for fighting cancer and bacterial infection. Sci China Mater, 2017, 60: 487–503CrossRefGoogle Scholar
  55. 55.
    Zhang M, Zhang C, Zhai X, et al. Antibacterial mechanism and activity of cerium oxide nanoparticles. Sci China Mater, 2019, 58: 1–13Google Scholar
  56. 56.
    Yuan H, Chong H, Wang B, et al. Chemical molecule-induced light-activated system for anticancer and antifungal activities. J Am Chem Soc, 2012, 134: 13184–13187CrossRefGoogle Scholar
  57. 57.
    Liu K, Liu Y, Yao Y, et al. Supramolecular photosensitizers with enhanced antibacterial efficiency. Angew Chem Int Ed, 2013, 52: 8285–8289CrossRefGoogle Scholar
  58. 58.
    Shi H, Zou L, Huang K, et al. A highly efficient red metal-free organic phosphor for time-resolved luminescence imaging and photodynamic therapy. ACS Appl Mater Interfaces, 2019, 11: 18103–18110CrossRefGoogle Scholar
  59. 59.
    Ogilby PR. Singlet oxygen: There is indeed something new under the sun. Chem Soc Rev, 2010, 39: 3181–3209CrossRefGoogle Scholar
  60. 60.
    Ma X, Sreejith S, Zhao Y. Spacer intercalated disassembly and photodynamic activity of zinc phthalocyanine inside nanochannels of mesoporous silica nanoparticles. ACS Appl Mater Interfaces, 2013, 5: 12860–12868CrossRefGoogle Scholar
  61. 61.
    Kawesa S, Vanstone J, Tsilfidis C. A differential response to newt regeneration extract by C2C12 and primary mammalian muscle cells. Skeletal Muscle, 2015, 5: 19–34CrossRefGoogle Scholar
  62. 62.
    Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri SM, et al. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Adv Drug Deliver Rev, 2018, 123: 33–64CrossRefGoogle Scholar
  63. 63.
    Fitzwater J, Purdue GF, Hunt JL, et al. The risk factors and time course of sepsis and organ dysfunction after burn trauma. J Trauma-Injury Infection Critical Care, 2003, 54: 959–966CrossRefGoogle Scholar
  64. 64.
    Miao Q, Xie C, Zhen X, et al. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat Biotechnol, 2017, 35: 1102–1110CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shan Wang (王姗)
    • 1
  • Miao Xu (徐淼)
    • 1
  • Kaiwei Huang (黄凯薇)
    • 1
  • Jiahuan Zhi (支佳欢)
    • 1
  • Chen Sun (孙晨)
    • 1
  • Kai Wang (王楷)
    • 1
  • Qian Zhou (周倩)
    • 1
  • Lingling Gao (高玲玲)
    • 1
  • Qingyan Jia (贾庆岩)
    • 2
  • Huifang Shi (史慧芳)
    • 1
    Email author
  • Zhongfu An (安众福)
    • 1
    Email author
  • Peng Li (李鹏)
    • 1
    • 2
    Email author
  • Wei Huang (黄维)
    • 1
    • 2
  1. 1.Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)NanjingChina
  2. 2.Xi’an Institute of Flexible Electronics (IFE) & Xi’an Institute of Biomedical Materials Engineering (IBME)Northwestern Polytechnical University (NPU)Xi’anChina

Personalised recommendations