Self-catalyzed growth of GaSb nanowires for high performance ultraviolet-visible-near infrared photodetectors

  • Kai Zhang (张凯)
  • Ruiqing Chai (柴瑞青)
  • Ruilong Shi (史瑞龙)
  • Zheng Lou (娄正)
  • Guozhen Shen (沈国震)Email author


A simple self-catalyzed chemical vapor deposition process was conducted to synthesize single-crystalline GaSb nanowires, where Ga droplets were utilized as the catalysts. The as-grown GaSb nanowires exhibited typical p-type semiconductor behavior with the calculated hole mobility of about 0.042 cm2 V−1 s−1 The photoresponse properties of the GaSb nanowires were studied by fabricating nanowire photodetectors on both rigid and flexible substrates. The results revealed that the photodetectors exhibited broad spectral response ranging from ultraviolet, visible, to near infrared region. For the device on rigid substrate, the corresponding responsivity and the detectivity were calculated to be 3.86×103A W−1 and 3.15×1013 Jones for 500 nm light, and 7.22×102A W−1 and 5.90×1012 Jones for 808 nm light, respectively, which were the highest value compared with those of other reported Ga1−xInxAsySb1−y structure nanowires. Besides, the flexible photodetectors not only maintained the comparable good photoresponse properties as the rigid one, but also possessed excellent mechanical flexibility and stability. This study could facilitate the understanding on the fundamental characteristics of self-catalyzed grown GaSb nanowires and the design of functional nano-optoelectronic devices based on Gasb nanowires.


GaSb nanowires chemical vapor deposition mobility photoresponse near-infrared flexible 



本文应用镓金属液滴作为催化剂, 采用化学气相沉积方法自 催化合成了单晶GaSb纳米线. 研究表明该GaSb纳米线为典型的p型 半导体, 霍尔迁移率为> 0.042 cm2 V−1 s−1. 硅基和柔性衬底上构筑 的基于GaSb纳米线的光电探测器, 具有良好的紫外-可见-近红外宽 光谱探测性能. 硅基器件对5 0 0 nm的可见光响应率可达 3.86×103 A W−1, 探测率可达3.15×1013 Jones; 柔性器件在保持相似 光电性能的同时, 具有极好的机械柔韧性和稳定性. 本文有助于更 好地揭示自催化生长的GaSb纳米线的性能, 并为进一步设计基于 GaSb纳米线的功能光电器件打下了实验基础.



This work was supported by the National Natural Science Foundation of China (61574132 and 61625404).

Supplementary material

40843_2019_1189_MOESM1_ESM.pdf (1.3 mb)
Self-catalyzed growth of GaSb nanowires for high performance ultraviolet-visible-near infrared photodetectors


  1. 1.
    Novotny CJ, Yu ET, Yu PKL. InP nanowire/polymer hybrid photodiode. Nano Lett, 2008, 8: 775–779CrossRefGoogle Scholar
  2. 2.
    Fang H, Hu W, Wang P, et al. Visible light-assisted high-performance mid-infrared photodetectors based on single InAs nanowire. Nano Lett, 2016, 16: 6416–6424CrossRefGoogle Scholar
  3. 3.
    Guo N, Hu W, Liao L, et al. Anomalous and highly efficient InAs nanowire phototransistors based on majority carrier transport at room temperature. Adv Mater, 2014, 26: 8203–8209CrossRefGoogle Scholar
  4. 4.
    Yang ZX, Han N, Fang M, et al. Surfactant-assisted chemical vapour deposition of high-performance small-diameter GaSb nanowires. Nat Commun, 2014, 5: 5249CrossRefGoogle Scholar
  5. 5.
    Yang Z, Liu L, Yip SP, et al. Complementary metal oxide semiconductor-compatible, high-mobility, 111-oriented GaSb nanowires enabled by vapor-solid-solid chemical vapor deposition. ACS Nano, 2017, 11: 4237–4246CrossRefGoogle Scholar
  6. 6.
    Ek M, Borg BM, Johansson J, et al. Diameter limitation in growth of III-Sb-containing nanowire heterostructures. ACS Nano, 2013, 7: 3668–3675CrossRefGoogle Scholar
  7. 7.
    Yang Z, Yip SP, Li D, et al. Approaching the hole mobility limit of GaSb nanowires. ACS Nano, 2015, 9: 9268–9275CrossRefGoogle Scholar
  8. 8.
    Luo T, Liang B, Liu Z, et al. Single-GaSb-nanowire-based room temperature photodetectors with broad spectral response. Sci Bull, 2015, 60: 101–108CrossRefGoogle Scholar
  9. 9.
    Burke RA, Weng X, Kuo MW, et al. Growth and characterization of unintentionally doped GaSb nanowires. J Elec Mater, 2010, 39: 355–364CrossRefGoogle Scholar
  10. 10.
    Pan D, Fan DX, Kang N, et al. Free-standing two-dimensional single-crystalline InSb nanosheets. Nano Lett, 2016, 16: 834–841CrossRefGoogle Scholar
  11. 11.
    Mattias Borg B, Wernersson LE. Synthesis and properties of antimonide nanowires. Nanotechnology, 2013, 24: 202001CrossRefGoogle Scholar
  12. 12.
    Zhang Y, Wu J, Aagesen M, et al. III–V nanowires and nanowire optoelectronic devices. J Phys D-Appl Phys, 2015, 48: 463001CrossRefGoogle Scholar
  13. 13.
    Vurgaftman I, Meyer JR, Ram-Mohan LR. Band parameters for III–V compound semiconductors and their alloys. J Appl Phys, 2001, 89: 5815–5875CrossRefGoogle Scholar
  14. 14.
    Liu Z, Luo T, Liang B, et al. High-detectivity InAs nanowire photodetectors with spectral response from ultraviolet to near-infrared. Nano Res, 2013, 6: 775–783CrossRefGoogle Scholar
  15. 15.
    Plis EA, Kutty MN, Myers S, et al. Performance improvement of long-wave infrared InAs/GaSb strained-layer superlattice detectors through sulfur-based passivation. Infrared Phys Tech, 2012, 55: 216–219CrossRefGoogle Scholar
  16. 16.
    Kim C, Kurosaki K, Muta H, et al. Thermoelectric properties of Zn-doped GaSb. J Appl Phys, 2012, 111: 043704CrossRefGoogle Scholar
  17. 17.
    Ma L, Hu W, Zhang Q, et al. Room-temperature near-infrared photodetectors based on single heterojunction nanowires. Nano Lett, 2014, 14: 694–698CrossRefGoogle Scholar
  18. 18.
    Yu X, Li L, Wang H, et al. Two-step fabrication of self-catalyzed Ga-based semiconductor nanowires on Si by molecular-beam epitaxy. Nanoscale, 2016, 8: 10615–10621CrossRefGoogle Scholar
  19. 19.
    Guo YN, Zou J, Paladugu M, et al. Structural characteristics of GaSb/GaAs nanowire heterostructures grown by metal-organic chemical vapor deposition. Appl Phys Lett, 2006, 89: 231917CrossRefGoogle Scholar
  20. 20.
    Schulz S, Schwartz M, Kuczkowski A, et al. Self-catalyzed growth of GaSb nanowires at low reaction temperatures. J Cryst Growth, 2010, 312: 1475–1480CrossRefGoogle Scholar
  21. 21.
    Zamani RR, Gorji Ghalamestani S, Niu J, et al. Polarity and growth directions in Sn-seeded GaSb nanowires. Nanoscale, 2017, 9: 3159–3168CrossRefGoogle Scholar
  22. 22.
    Jeppsson M, Dick KA, Nilsson HA, et al. Characterization of GaSb nanowires grown by MOVPE. J Cryst Growth, 2008, 310: 5119–5122CrossRefGoogle Scholar
  23. 23.
    Ganjipour B, Nilsson HA, Mattias Borg B, et al. GaSb nanowire single-hole transistor. Appl Phys Lett, 2011, 99: 262104CrossRefGoogle Scholar
  24. 24.
    Soci C, Zhang A, Xiang B, et al. ZnO nanowire UV photodetectors with high internal gain. Nano Lett, 2007, 7: 1003–1009CrossRefGoogle Scholar
  25. 25.
    Chen G, Liang B, Liu X, et al. High-performance hybrid phenyl-C61-butyric acid methyl ester/Cd3P2 nanowire ultraviolet-visible-near infrared photodetectors. ACS Nano, 2014, 8: 787–796CrossRefGoogle Scholar
  26. 26.
    Zhang K, Luo T, Chen H, et al. Au-nanoparticles-decorated Sb2S3 nanowire-based flexible ultraviolet/visible photodetectors. J Mater Chem C, 2017, 5: 3330–3335CrossRefGoogle Scholar
  27. 27.
    Lou Z, Li L, Shen G. Ultraviolet/visible photodetectors with ultrafast, high photosensitivity based on 1D ZnS/CdS heterostructures. Nanoscale, 2016, 8: 5219–5225CrossRefGoogle Scholar
  28. 28.
    Shen G, Chen PC, Bando Y, et al. Pearl-like ZnS-decorated InP nanowire heterostructures and their electric behaviors. Chem Mater, 2008, 20: 6779–6783CrossRefGoogle Scholar
  29. 29.
    Wang X, Zhang Y, Chen X, et al. Ultrafast, superhigh gain visible-blind UV detector and optical logic gates based on nonpolar a-axial GaN nanowire. Nanoscale, 2014, 6: 12009–12017CrossRefGoogle Scholar
  30. 30.
    Dutta PS, Bhat HL, Kumar V. The physics and technology of gallium antimonide: An emerging optoelectronic material. J Appl Phys, 1997, 81: 5821–5870CrossRefGoogle Scholar
  31. 31.
    Cui Y, Duan X, Hu J, et al. Doping and electrical transport in silicon nanowires. J Phys Chem B, 2000, 104: 5213–5216CrossRefGoogle Scholar
  32. 32.
    Yu G, Liang B, Huang H, et al. Contact printing of horizontally-aligned p-type Zn3P2 nanowire arrays for rigid and flexible photodetectors. Nanotechnology, 2013, 24: 095703CrossRefGoogle Scholar
  33. 33.
    Gong X, Tong M, Xia Y, et al. High-detectivity polymer photo-detectors with spectral response from 300 nm to 1450 nm. Science, 2009, 325: 1665–1667CrossRefGoogle Scholar
  34. 34.
    Miao J, Hu W, Guo N, et al. Single InAs nanowire room-temperature near-infrared photodetectors. ACS Nano, 2014, 8: 3628–3635CrossRefGoogle Scholar
  35. 35.
    Zheng D, Wang J, Hu W, et al. When nanowires meet ultrahigh ferroelectric field-high-performance full-depleted nanowire photodetectors. Nano Lett, 2016, 16: 2548–2555CrossRefGoogle Scholar
  36. 36.
    Tan H, Fan C, Ma L, et al. Single-crystalline InGaAs nanowires for room-temperature high-performance near-infrared photo-detectors. Nano-Micro Lett, 2016, 8: 29–35CrossRefGoogle Scholar
  37. 37.
    Ma L, Zhang X, Li H, et al. Bandgap-engineered GaAsSb alloy nanowires for near-infrared photodetection at 1.31 µm. Semicond Sci Technol, 2015, 30: 105033CrossRefGoogle Scholar
  38. 38.
    Li D, Lan C, Manikandan A, et al. Ultra-fast photodetectors based on high-mobility indium gallium antimonide nanowires. Nat Commun, 2019, 10: 1664CrossRefGoogle Scholar
  39. 39.
    Chen X, Li H, Qi Z, et al. Synthesis and optoelectronic properties of quaternary GaInAsSb alloy nanosheets. Nanotechnology, 2016, 27: 505602CrossRefGoogle Scholar
  40. 40.
    Li MZ, Chen XL, Li HL, et al. Optoelectronic properties of single-crystalline GaInAsSb quaternary alloy nanowires. Chin Phys B, 2018, 27: 078101CrossRefGoogle Scholar
  41. 41.
    Liu Z, Xu J, Chen D, et al. Flexible electronics based on inorganic nanowires. Chem Soc Rev, 2015, 44: 161–192CrossRefGoogle Scholar
  42. 42.
    Li L, Lou Z, Shen G. Hierarchical CdS nanowires based rigid and flexible photodetectors with ultrahigh sensitivity. ACS Appl Mater Interfaces, 2015, 7: 23507–23514CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kai Zhang (张凯)
    • 1
    • 3
  • Ruiqing Chai (柴瑞青)
    • 1
    • 2
  • Ruilong Shi (史瑞龙)
    • 1
    • 2
  • Zheng Lou (娄正)
    • 1
  • Guozhen Shen (沈国震)
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Superlattices and Microstructures, Institution of SemiconductorsChinese Academy of SciencesBeijingChina
  2. 2.Center of Materials Science and Opto-electronic EngineeringUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Hebei Key Lab of Optic-electronic Information and Materials, the College of Physics Science and TechnologyHebei UniversityBaodingChina

Personalised recommendations