Advertisement

Significant broadband extinction abilities of bioaerosols

  • Yihua Hu (胡以华)
  • Xinying Zhao (赵欣颖)Email author
  • Youlin Gu (顾有林)
  • Xi Chen (陈曦)
  • Xinyu Wang (王新宇)
  • Peng Wang (王鹏)
  • Zhiming Zheng (郑之明)
  • Xiao Dong (董骁)
Articles
  • 24 Downloads

Abstract

Bioaerosol, an important constituent of the atmosphere, can directly affect light radiation characteristics due to absorption and scattering effects. Current research lacks a reasonable explanation for the extinction abilities of bioaerosols in a broadband. Herein, we measured the reflectance spectra of 12 common biomaterials and calculated their complex refractive indexes. The peaks of the imaginary part of the complex refractive indexes are located at wavelengths of approximately 0.7, 2.7, 6.1 and 9.5 μm. Based on photographs of the floating structures of bioaerosols, we constructed a model for calculating the extinction abilities of bioaerosols in the wavelength range of 240 nm to 14 μm. Taking AN02 spores as an example, absorption was found to account for more than 90% of the total extinction. In addition, the theoretical calculations and experimental data of transmittance corresponding to the smoke box show that bioaerosol exhibits significant broadband extinction ability from UV to IR bands, which provides new directions for the development of broadband light attenuation materials.

Keywords

bioaerosol complex refractive index UV to IR broadband light attenuation 

生物气溶胶具有显著的宽带消光能力

中文摘要

生物气溶胶是大气的重要组成部分, 因其吸收和散射效应, 可直接影响光辐射特性. 当前对于生物气溶胶是否具有宽波段消光特性 的研究还不够充分. 本文中, 我们测量了12种常见生物材料在240 nm–14 μm波段内的反射光谱, 并结合K-K算法计算了不同生物气溶胶材 料的复折射率. 我们发现, 不同种质生物气溶胶的吸收峰具有共性, 位于约0.7, 2.7, 6.1和9.5 μm处. 基于烟幕箱中生物气溶胶漂浮状态实际 结构的照片, 我们构建了模型计算240 nm–14 μm波长范围内生物气溶胶的消光能力. 以AN02孢子为例, 我们发现吸收作用占AN02孢子群 消光总量的90%以上. 此外, 我们对比了生物气溶胶理论计算透过率与大型烟幕箱实测透射率数据, 理论计算和实验验证都显示生物气溶 胶在紫外到红外波段具有显著的宽波段消光能力. 这一发现为宽波段消光材料的发展提供了新的研究方向.

Notes

Acknowledgements

We thank Professor B. T. Draine of Princeton University for providing the main program of DDA. This work was supported by the National Natural Science Foundation of China (61271353 and 60908033), and the Natural Science Foundation of Anhui Province (1408085MKL47).

Supplementary material

40843_2018_9411_MOESM1_ESM.pdf (2.2 mb)
Significant broadband extinction abilities of bioaerosols

References

  1. 1.
    Griffin DW. Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clinical MicroBiol Rev, 2007, 20: 459–477CrossRefGoogle Scholar
  2. 2.
    Gilbert Y, Duchaine C. Bioaerosols in industrial environments: a review. Can J Civ Eng, 2009, 36: 1873–1886CrossRefGoogle Scholar
  3. 3.
    Liu W, Zhu X, Lei M, et al. A detailed procedure for CRISPR/Cas9- mediated gene editing in Arabidopsis thaliana. Sci Bull, 2015, 60: 1332–1347CrossRefGoogle Scholar
  4. 4.
    Wei K, Zheng Y, Li J, et al. Microbial aerosol characteristics in highly polluted and near-pristine environments featuring different climatic conditions. Sci Bull, 2015, 60: 1439–1447CrossRefGoogle Scholar
  5. 5.
    Castillo JA, Staton SJR, Taylor TJ, et al. Exploring the feasibility of bioaerosol analysis as a novel fingerprinting technique. Anal Bioanal Chem, 2012, 403: 15–26CrossRefGoogle Scholar
  6. 6.
    Fröhlich-Nowoisky J, Kampf CJ, Weber B, et al. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmos Res, 2016, 182: 346–376CrossRefGoogle Scholar
  7. 7.
    Van Leuken JPG, Swart AN, Havelaar AH, et al. Atmospheric dispersion modelling of bioaerosols that are pathogenic to humans and livestock—A review to inform risk assessment studies. Microbial Risk Anal, 2016, 1: 19–39CrossRefGoogle Scholar
  8. 8.
    Kenny CM, Jennings SG. Background bioaerosol measurements at mace head. J Aerosol Sci, 1998, 29: S779–S780CrossRefGoogle Scholar
  9. 9.
    Reid JP, Bertram AK, Topping DO, et al. The viscosity of atmospherically relevant organic particles. Nat Commun, 2018, 9: 956CrossRefGoogle Scholar
  10. 10.
    Després VR, Huffman JA, Burrows SM, et al. Primary biological aerosol particles in the atmosphere: a review. Tellus B-Chem Phys Meteor, 2012, 64: 15598CrossRefGoogle Scholar
  11. 11.
    Matthias-Maser S, Obolkin V, Khodzer T, et al. Seasonal variation of primary biological aerosol particles in the remote continental region of Lake Baikal/Siberia. Atmos Environ, 2000, 34: 3805–3811CrossRefGoogle Scholar
  12. 12.
    Jaenicke R. Abundance of cellular material and proteins in the atmosphere. Science, 2005, 308: 73CrossRefGoogle Scholar
  13. 13.
    Huffman JA, Sinha B, Garland RM, et al. Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08. Atmos Chem Phys, 2012, 12: 11997–12019CrossRefGoogle Scholar
  14. 14.
    Crutzen PJ. Geology of mankind. Nature, 2002, 415: 23CrossRefGoogle Scholar
  15. 15.
    Adams KF, Hyde HA, Williams DA. Woodlands as a source of allergens. Allergy, 1968, 23: 265–281CrossRefGoogle Scholar
  16. 16.
    Spänkuch D, Döhler W, Güldner J. Effect of coarse biogenic aerosol on downwelling infrared flux at the surface. J Geophys Res, 2000, 105: 17341–17350CrossRefGoogle Scholar
  17. 17.
    Guyon P, Graham B, Roberts GC, et al. Sources of optically active aerosol particles over the Amazon forest. Atmos Environ, 2004, 38: 1039–1051CrossRefGoogle Scholar
  18. 18.
    Makogon MM. Comparative analysis of spectroscopic methods for remote diagnostics of bioaerosols. Atmos Ocean Opt, 2011, 24: 123–132CrossRefGoogle Scholar
  19. 19.
    Christesen SD, Merrow CN, Desha MS, et al. Ultraviolet fluorescence lidar detection of bioaerosols. SPIE Proc, 1994, 2222: 228–237CrossRefGoogle Scholar
  20. 20.
    Yabushita S, Wada K, Takai T, et al. A spectroscopic study of the microorganism model of interstellar grains. Astrophys Space Sci, 1986, 124: 377–388CrossRefGoogle Scholar
  21. 21.
    Wickramasinghe NC, Wallis MK, Al-Mufti S, et al. The organic nature of cometary grains. Earth Moon Planet, 1988, 40: 101–108CrossRefGoogle Scholar
  22. 22.
    Hoyle F, Wickramasinghe NC, Al-Mufti S. The ultraviolet absorbance of presumably interstellar bacteria and related matters. Astrophys Space Sci, 1985, 111: 65–78CrossRefGoogle Scholar
  23. 23.
    Ligon DA, Wetmore AE, Gillespie PS. Simulation of the passive infrared spectral signatures of bioaerosol and natural fog clouds immersed in the background atmosphere. Opt Express, 2002, 10: 909CrossRefGoogle Scholar
  24. 24.
    Gittins CM, Piper LG, Rawlins WT, et al. Passive and active standoff infrared detection of bio-aerosols. Field Analyt Chem Technol, 1999, 3: 274–282CrossRefGoogle Scholar
  25. 25.
    Gurton KP, Ligon D, Kvavilashvili R. Measured infrared spectral extinction for aerosolized Bacillus subtilis var niger endospores from 3 to 13 µm. Appl Opt, 2001, 40: 4443–4448CrossRefGoogle Scholar
  26. 26.
    Yabushita S, Wada K. The infrared and ultraviolet absorptions of micro-organisms and their relation to the Hoyle-Wickramashinghe hypothesis. Astrophys Space Sci, 1985, 110: 405–411CrossRefGoogle Scholar
  27. 27.
    Wang P, Liu H, Zhao Y, et al. Electromagnetic attenuation characteristics of microbial materials in the infrared band. Appl Spectrosc, 2016, 70: 1456–1463CrossRefGoogle Scholar
  28. 28.
    Liu H, Wang P, Hu Y, et al. Optimised fermentation conditions and improved collection efficiency using dual cyclone equipment to enhance fungal conidia production. Biocontrol Sci Tech, 2015, 25: 1011–1023CrossRefGoogle Scholar
  29. 29.
    Liu H, Zhao X, Guo M, et al. Growth and metabolism of Beauveria bassiana spores and mycelia. BMC Microbiol, 2015, 15: 267–279CrossRefGoogle Scholar
  30. 30.
    Segal-Rosenheimer M, Linker R. Impact of the non-measured infrared spectral range of the imaginary refractive index on the derivation of the real refractive index using the Kramers–Kronig transform. J Quantitative Spectr Radiative Transfer, 2009, 110: 1147–1161CrossRefGoogle Scholar
  31. 31.
    Booij HC, Thoone GPJM. Generalization of Kramers-Kronig transforms and some approximations of relations between viscoelastic quantities. Rheol Acta, 1982, 21: 15–24CrossRefGoogle Scholar
  32. 32.
    Grosse P, Offermann V. Analysis of reflectance data using the Kramers-Kronig relations. Appl Phys A, 1991, 52: 138–144CrossRefGoogle Scholar
  33. 33.
    Poelman D, Frederic Smet P. Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review. J Phys D-Appl Phys, 2003, 36: 1850–1857CrossRefGoogle Scholar
  34. 34.
    Zhao X, Hu Y, Gu Y. The infrared spectral transmittance of Aspergillus Niger spore aggregated particle swarm. SPIE Proc, 2015, 9678: 1717Google Scholar
  35. 35.
    Sun D, Hu Y, Gu Y, et al. Determination and model construction of microbes’ complex refractive index in far infrared band. Acta Phys Sin, 2013, 62: 268–276Google Scholar
  36. 36.
    Li L, Hu Y, Chen W, et al. Measurement and analysis on complex refraction indices of pear pollen in infrared band. Spectrosc Spectr Anal, 2015, 35: 89–92Google Scholar
  37. 37.
    Sun D, Hu Y, Wang Y, et al. Sub-microstructures’ influences on cell’s scattering prosperities. Acta Phot Sin, 2013, 42: 710–714CrossRefGoogle Scholar
  38. 38.
    Sun D, Hu Y, Gu Y, et al. Preparation and performance testing of metallic biologic particles. Acta Phot Sin, 2013, 42: 555–558CrossRefGoogle Scholar
  39. 39.
    Sun D, Hu Y, Li L. Test and analysis of infrared and microwave characteristics of metallic farinas. Infrared Laser Eng, 2013, 42: 2531–2535Google Scholar
  40. 40.
    Gu Y, Wang C, Yang L, et al. Infrared extinction before and after Aspergillus niger spores inactivation. Infrared Laser Eng, 2015, 44: 36–41Google Scholar
  41. 41.
    Li L, Hu Y, Gu Y, et al. Infrared extinction performance of Aspergillus niger spores. Infrared Laser Eng, 2014, 43: 2176–2180Google Scholar
  42. 42.
    Li L, Hu Y, Gu Y, et al. Infrared extinction performance of randomly oriented microbial-clustered agglomerate materials. Appl Spectrosc, 2017, 71: 2555–2562CrossRefGoogle Scholar
  43. 43.
    Gu Y, Hu Y, Zhao X, et al. Discrimination of viable and dead microbial materials with Fourier transform infrared spectroscopy in 3–5 micrometers. Opt Express, 2018, 26: 15842CrossRefGoogle Scholar
  44. 44.
    Zhao X, Hu Y, Gu Y. Transmittance of laser in the microorganism aggregated particle Swarm. Acta Optica Sin, 2015, 35: 222–228Google Scholar
  45. 45.
    Yurkin MA, Hoekstra AG. The discrete dipole approximation: An overview and recent developments. J Quantitat Spectr Rad Transfer, 2007, 106: 558–589CrossRefGoogle Scholar
  46. 46.
    Li C, Xiong H. 3D simulation of the Cluster–Cluster aggregation model. Comput Phys Commun, 2014, 185: 3424–3429CrossRefGoogle Scholar
  47. 47.
    Draine BT, Flatau PJ. Discrete-dipole approximation for scattering calculations. J Opt Soc Am A, 1994, 11: 1491–1499CrossRefGoogle Scholar
  48. 48.
    Flatau PJ, Draine BT. Fast near field calculations in the discrete dipole approximation for regular rectilinear grids. Opt Express, 2012, 20: 1247–1252CrossRefGoogle Scholar
  49. 49.
    Kinnunen M, Kauppila A, Karmenyan A, et al. Effect of the size and shape of a red blood cell on elastic light scattering properties at the single-cell level. Biomed Opt Express, 2011, 2: 1803CrossRefGoogle Scholar
  50. 50.
    Dong J, Zhao JM, Liu LH. Effect of spine-like surface structures on the radiative properties of microorganism. J Quantit Spectr Radiat Transfer, 2016, 173: 49–64CrossRefGoogle Scholar
  51. 51.
    Lee E, Heng RL, Pilon L. Spectral optical properties of selected photosynthetic microalgae producing biofuels. J Quantit Spectr Radiat Transfer, 2013, 114: 122–135CrossRefGoogle Scholar
  52. 52.
    Lattuada M, Wu H, Morbidelli M. Radial density distribution of fractal clusters. Chem Eng Sci, 2004, 59: 4401–4413CrossRefGoogle Scholar
  53. 53.
    Kozasa T, Blum J, Okamoto H, et al. Optical properties of dust aggregates I. Wavelength dependence. Astron Astrophys, 1992, 263: 423–432Google Scholar
  54. 54.
    Kozasa T, Blum J, Okamoto H, et al. Optical properties of dust aggregates II. Angular dependence of scattered light. Astron Astrophys, 1993, 276: 278–288Google Scholar
  55. 55.
    Min M, Dominik C, Hovenier JW, et al. The 10m amorphous silicate feature of fractal aggregates and compact particles with complex shapes. Astron Astrophys, 2006, 445: 1005–1014CrossRefGoogle Scholar
  56. 56.
    Huang C, Wu Z, Liu Y, et al. Effect of porosity on optical properties of aerosol aggregate particles. Acta Optica Sin, 2013, 33: 129001CrossRefGoogle Scholar
  57. 57.
    Draine BT. The discrete-dipole approximation and its application to interstellar graphite grains. Astrophys J, 1988, 333: 848–872CrossRefGoogle Scholar
  58. 58.
    Jacques SL. Modeling tissue optics-using Monte Carlo modeling a tutorial. SPIE Proc, 2008, 6854: 1–9Google Scholar
  59. 59.
    Wang L, Jacques SL, Zheng L. MCML—Monte Carlo modeling of light transport in multi-layered tissues. Comput Methods Programs Biomed, 1995, 47: 131–146CrossRefGoogle Scholar
  60. 60.
    Zhao X, Hu Y, Gu Y, et al. Transmittance of laser in the microorganism aggregated particle swarm. Acta Phot Sin, 2015, 35: 0616001Google Scholar
  61. 61.
    Liu J, Zeng Y, Yang C. Light scattering study of biological cells with the discrete dipole approximation. Infrared Laser Eng, 2014, 43: 2204–2208Google Scholar
  62. 62.
    Jin S, Chen H. Near-infrared analysis of the chemical composition of rice straw. Industrial Crops Products, 2007, 26: 207–211CrossRefGoogle Scholar
  63. 63.
    Cao S, Zhao Y. Application of molecular absorption spectrophotometric method to the determination of biologic macromolecular structures. Spectrosc Spect Anal, 2004, 24: 1197–1201Google Scholar
  64. 64.
    Lin X, Pan Y, Guo Y, et al. The study of cervical cancer cells model based on UV absorption spectrum. Spectrosc Spect Anal, 2009, 29: 2547–2550Google Scholar
  65. 65.
    Susi H, Byler DM. Fourier transform infrared study of proteins with parallel β-chains. Archives Biochem Biophys, 1987, 258: 465–469CrossRefGoogle Scholar
  66. 66.
    Li D, Yan C, Hu F, et al. Studied on simulation spectra of protein secondary structures by two-dimensional infrared correlation spectroscopy. J Light Scatt, 2013, 25: 417–422Google Scholar
  67. 67.
    Saito I, Sugiyama H, Matsuura T. Photochemical reactions of nucleic acids and their constituents of photobiological relevance. Photochem Photobiol, 1983, 38: 735–743CrossRefGoogle Scholar
  68. 68.
    del Pozo JM, Díaz L. A comparison of methods for the determination of optical constants of thin films. Thin Solid Films, 1992, 209: 137–144CrossRefGoogle Scholar
  69. 69.
    Li J, An W, Zhu T. The development of measurement and calculation model of the medium complex-refractive index. Energy Conserv Technol, 2017, 35: 214–219CrossRefGoogle Scholar
  70. 70.
    Zhong D, Wang L, Yu Y. Optical constants measurement of thin film by spectrophotometry. J Liaoning Univ Natl Sci Ed, 1996, 23: 1–13Google Scholar
  71. 71.
    Pekker D. A method for determining thickness and optical constants of absorbing thin films. Thin Solid Films, 2003, 425: 203–209CrossRefGoogle Scholar
  72. 72.
    Wu Q. Ellipsometry of measuring for optical constant of an absorbing film. J Zhejiang Univ, 1982, 16: 1–7Google Scholar
  73. 73.
    Li C. Absorption and scattering of optical films. J Applied Optics, 1982, 3: 3–13Google Scholar
  74. 74.
    Bailey GF, Karp S, Sacks LE. Ultraviolet-absorption spectra of dry bacterial spores. J Bacteriol, 1965, 99: 984–987Google Scholar
  75. 75.
    Inagaki T. Optical absorptions of aliphatic amino acids in the far ultraviolet. Biopolymers, 1973, 12: 1353–1362CrossRefGoogle Scholar
  76. 76.
    Tuminello PS, Arakawa ET, Khare BN, et al. Optical properties of Bacillus subtilis spores from 0.2 to 25 µm. Appl Opt, 1997, 36: 2818–2824CrossRefGoogle Scholar
  77. 77.
    Arakawa ET, Tuminello PS, Khare BN, et al. Optical properties of horseradish peroxidase from 0.13 to 2.5 µm. Biospectroscopy, 1997, 3: 73–80CrossRefGoogle Scholar
  78. 78.
    Emerson LC, Williams MW, Tang I, et al. Optical properties of guanine from 2 to 82 eV. Radiat Res, 1975, 63: 235–244CrossRefGoogle Scholar
  79. 79.
    Hill SC, Doughty DC, Pan YL, et al. Fluorescence of bioaerosols: mathematical model including primary fluorescing and absorbing molecules in bacteria: errata. Opt Express, 2014, 22: 22817CrossRefGoogle Scholar
  80. 80.
    Yabushita S, Wada K, Inagaki T, et al. Photometric and photo accoustic measurement of the absorbance of micro-organisms and its relation to the micro-organism-grain hypothesis. Astrophys Space Sci, 1985, 117: 401–406CrossRefGoogle Scholar
  81. 81.
    Hoyle F, Wickramasinghe NC, Al-Mufti S. The measurement of the absorption properties of dry micro-organisms and its relationship to astronomy. Astrophys Space Sci, 1985, 113: 413–416CrossRefGoogle Scholar
  82. 82.
    Draine BT, Flatau PJ. User Guide for the Discrete Dipole Approximation Code. DDSCAT 7.3, 2013Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yihua Hu (胡以华)
    • 1
    • 2
  • Xinying Zhao (赵欣颖)
    • 1
    • 2
    Email author
  • Youlin Gu (顾有林)
    • 1
    • 2
  • Xi Chen (陈曦)
    • 1
    • 2
  • Xinyu Wang (王新宇)
    • 1
    • 2
  • Peng Wang (王鹏)
    • 3
  • Zhiming Zheng (郑之明)
    • 3
  • Xiao Dong (董骁)
    • 1
    • 2
  1. 1.State Key Laboratory of Pulsed Power Laser TechnologyNational University of Defense TechnologyHefeiChina
  2. 2.Anhui Province Key Laboratory of Electronic RestrictionNational University of Defense TechnologyHefeiChina
  3. 3.Key Laboratory of Ion Beam BioengineeringHefei Institutes of Physical Science, Chinese Academy of SciencesHefeiChina

Personalised recommendations