Science China Materials

, Volume 62, Issue 7, pp 955–964 | Cite as

Amphiphilic core-sheath structured composite fiber for comprehensively performed supercapacitor

  • Xuemei Fu (付雪梅)
  • Zhuoer Li (黎卓尔)
  • Limin Xu (许黎敏)
  • Meng Liao (廖萌)
  • Hao Sun (孙浩)
  • Songlin Xie (解松林)
  • Xuemei Sun (孙雪梅)
  • Bingjie Wang (王兵杰)Email author
  • Huisheng Peng (彭慧胜)Email author


As an important branch of fiber-shaped energy storage devices, the fiber-shaped supercapacitor has been widely studied recently. However, it remains challenging to simultaneously achieve fast electron transport and excellent ion accessibility in one single fiber electrode of the fibershaped supercapacitor. Herein, a novel family of amphiphilic core-sheath structured carbon nanotube composite fibers has been developed and applied to the fiber-shaped supercapacitor to address the above challenge. The polyaniline-modified hydrophilic sheath of the composite fiber electrode effectively enhanced the electrochemical property via advancing ion accessibility, while Au-deposited hydrophobic core demonstrated improved electrical conductivity by fast electron supply. On the basis of a synergistic effect, a remarkable specific capacitance of 324 F cm−3 at 0.5 A cm−3 and greatly enhanced rate performance were achieved, i.e., a 79% retention (256 F cm−3) at 50 A cm−3. The obtained fiber-shaped supercapacitor finally displayed remarkable energy and power densities of 7.2 mW h cm−3 and 10 W cm−3, respectively. The strategy developed herein also presents a general pathway towards novel fiber electrodes for high-performance wearable devices.



纤维状超级电容器是柔性储能器件的一个重要分支, 被学术界和产业界广泛关注. 如何制备高性能纤维电极及器件是目前的研究重点之一. 针对这一问题, 我们制备了一类具有双亲性核壳结构的碳纳米管复合纤维电极. 该复合纤维电极的壳层为聚苯胺修饰的亲水碳 纳米管以实现更好的离子可接近性, 从而有效提升电极的电化学性能; 而核层为纳米金沉积疏水碳纳米管以实现快速电子传输, 从而显著 提高电极的电导率. 得益于各组分之间的协同效应, 在0.5 A cm−3的电流密度下, 该复合纤维电极的比容量可以达到324 F cm−3. 同时该纤 维电极也展示了优异的倍率性能, 在50 A cm−3电流密度下, 比容量可以保持为小电流下比容量的79% (即256 F cm−3). 由此得到的纤维状 超级电容器也实现了高能量密度和高功率密度, 分别可达到7.2 mW h cm−3和10 W cm−3. 这种多层次的复合电极设计为制备其他高性能可穿戴器件提供了一种可行的方法.



This work was supported by the Ministry of Science and Technology (2016YFA0203302), the National Natural Science Foundation of China (21634003, 51573027, 51673043, 21604012, 21805044 and 21875042), Shanghai Science and Technology Committee (16JC1400702, 17QA1400400, 18QA1400700 and 18QA1400800), SHMEC (2017-01-07-00-07-E00062) and Yanchang Petroleum Group. Part of the sample fabrication was performed at Fudan Nano-Fabrication Laboratory.

Supplementary material

40843_2018_9408_MOESM1_ESM.pdf (5.1 mb)
Amphiphilic core-sheath structured composite fiber for comprehensively performed supercapacitor


  1. 1.
    Wu G, Tan P, Wu X, et al. High-performance wearable microsupercapacitors based on microfluidic-directed nitrogen-doped graphene fiber electrodes. Adv Funct Mater, 2017, 27: 1702493CrossRefGoogle Scholar
  2. 2.
    Wang L, Wang L, Zhang Y, et al. Weaving sensing fibers into electrochemical fabric for real-time health monitoring. Adv Funct Mater, 2018, 28: 1804456CrossRefGoogle Scholar
  3. 3.
    Liu P, Gao Z, Xu L, et al. Polymer solar cell textiles with interlaced cathode and anode fibers. J Mater Chem A, 2018, 6: 19947–19953CrossRefGoogle Scholar
  4. 4.
    Jia R, Li L, Ai Y, et al. Self-healable wire-shaped supercapacitors with two twisted NiCo2O4 coated polyvinyl alcohol hydrogel fibers. Sci China Mater, 2018, 61: 254–262CrossRefGoogle Scholar
  5. 5.
    Lee JA, Shin MK, Kim SH, et al. Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nat Commun, 2013, 4: 1970CrossRefGoogle Scholar
  6. 6.
    Sun H, Zhang Y, Zhang J, et al. Energy harvesting and storage in 1D devices. Nat Rev Mater, 2017, 2: 17023CrossRefGoogle Scholar
  7. 7.
    Kou L, Huang T, Zheng B, et al. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat Commun, 2014, 5: 3754CrossRefGoogle Scholar
  8. 8.
    Liang Y, Wang Z, Huang J, et al. Series of in-fiber graphene supercapacitors for flexible wearable devices. J Mater Chem A, 2015, 3: 2547–2551CrossRefGoogle Scholar
  9. 9.
    Lima MD, Fang S, Lepró X, et al. Biscrolling nanotube sheets and functional guests into yarns. Science, 2011, 331: 51–55CrossRefGoogle Scholar
  10. 10.
    Chen P, Xu Y, He S, et al. Hierarchically arranged helical fibre actuators driven by solvents and vapours. Nat Nanotech, 2015, 10: 1077–1083CrossRefGoogle Scholar
  11. 11.
    Ren J, Zhang Y, Bai W, et al. Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance. Angew Chem Int Ed, 2014, 53: 7864–7869CrossRefGoogle Scholar
  12. 12.
    Sun H, Fu X, Xie S, et al. Electrochemical capacitors with high output voltages that mimic electric eels. Adv Mater, 2016, 28: 2070–2076CrossRefGoogle Scholar
  13. 13.
    Wang X, Zhang Q, Sun J, et al. Facile synthesis of hierarchical porous manganese nickel cobalt sulfide nanotube arrays with enhanced electrochemical performance for ultrahigh energy density fiber-shaped asymmetric supercapacitors. J Mater Chem A, 2018, 6: 8030–8038CrossRefGoogle Scholar
  14. 14.
    Zhou J, Chen N, Ge Y, et al. Flexible all-solid-state micro-supercapacitor based on Ni fiber electrode coated with MnO2 and reduced graphene oxide via electrochemical deposition. Sci China Mater, 2018, 61: 243–253CrossRefGoogle Scholar
  15. 15.
    Wu X, Wu G, Tan P, et al. Construction of microfluidic-oriented polyaniline nanorod arrays/graphene composite fibers for application in wearable micro-supercapacitors. J Mater Chem A, 2018, 6: 8940–8946CrossRefGoogle Scholar
  16. 16.
    Qin T, Peng S, Hao J, et al. Flexible and wearable all-solid-state supercapacitors with ultrahigh energy density based on a carbon fiber fabric electrode. Adv Energy Mater, 2017, 7: 1700409CrossRefGoogle Scholar
  17. 17.
    Meng J, Nie W, Zhang K, et al. Enhancing electrochemical performance of graphene fiber-based supercapacitors by plasma treatment. ACS Appl Mater Interfaces, 2018, 10: 13652–13659CrossRefGoogle Scholar
  18. 18.
    Gao L, Song J, Surjadi JU, et al. Graphene-bridged multifunctional flexible fiber supercapacitor with high energy density. ACS Appl Mater Interfaces, 2018, 10: 28597–28607CrossRefGoogle Scholar
  19. 19.
    Shi P, Chen R, Hua L, et al. Highly concentrated, ultrathin nickel hydroxide nanosheet ink for wearable energy storage devices. Adv Mater, 2017, 29: 1703455CrossRefGoogle Scholar
  20. 20.
    Fu X, Sun H, Xie S, et al. A fiber-shaped solar cell showing a record power conversion efficiency of 10%. J Mater Chem A, 2018, 6: 45–51CrossRefGoogle Scholar
  21. 21.
    Cochet M, Maser WK, Benito AM, et al. Synthesis of a new polyaniline/nanotube composite: “in-situ” polymerisation and charge transfer through site-selective interaction. Chem Commun, 2001, 0: 1450–1451CrossRefGoogle Scholar
  22. 22.
    Yao Q, Chen L, Zhang W, et al. Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites. ACS Nano, 2010, 4: 2445–2451CrossRefGoogle Scholar
  23. 23.
    Wu TM, Lin YW, Liao CS. Preparation and characterization of polyaniline/multi-walled carbon nanotube composites. Carbon, 2005, 43: 734–740CrossRefGoogle Scholar
  24. 24.
    Wan M. Absorption spectra of thin film of polyaniline. J Polym Sci A Polym Chem, 1992, 30: 543–549CrossRefGoogle Scholar
  25. 25.
    Chen X, Lin H, Chen P, et al. Smart, stretchable supercapacitors. Adv Mater, 2014, 26: 4444–4449CrossRefGoogle Scholar
  26. 26.
    Liu C, Chen F, Zhang J, et al. Raman spectroscopic studies on electrosynthesized polyaniline film. Acta Phys-Chim Sin, 2003, 19: 810–814Google Scholar
  27. 27.
    Lukatskaya MR, Kota S, Lin Z, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat Energy, 2017, 2: 17105CrossRefGoogle Scholar
  28. 28.
    Wang Y, Guo CX, Liu J, et al. CeO2 nanoparticles/graphene nanocomposite- based high performance supercapacitor. Dalton Trans, 2011, 40: 6388–6391CrossRefGoogle Scholar
  29. 29.
    Wu ZS, Parvez K, Feng X, et al. Graphene-based in-plane microsupercapacitors with high power and energy densities. Nat Commun, 2013, 4: 2487CrossRefGoogle Scholar
  30. 30.
    Taberna PL, Simon P, Fauvarque JF. Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc, 2003, 150: A292CrossRefGoogle Scholar
  31. 31.
    Tao J, Liu N, Ma W, et al. Solid-state high performance flexible supercapacitors based on polypyrrole-MnO2-carbon fiber hybrid structure. Sci Rep, 2013, 3: 2286CrossRefGoogle Scholar
  32. 32.
    Liu L, Yu Y, Yan C, et al. Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene–metallic textile composite electrodes. Nat Commun, 2015, 6: 7260CrossRefGoogle Scholar
  33. 33.
    Li GX, Hou PX, Luan J, et al. A MnO2 nanosheet/single-wall carbon nanotube hybrid fiber for wearable solid-state supercapacitors. Carbon, 2018, 140: 634–643CrossRefGoogle Scholar
  34. 34.
    Sun Y, Sills RB, Hu X, et al. A bamboo-inspired nanostructure design for flexible, foldable, and twistable energy storage devices. Nano Lett, 2015, 15: 3899–3906CrossRefGoogle Scholar
  35. 35.
    Yu D, Zhai S, Jiang W, et al. Transforming pristine carbon fiber tows into high performance solid-state fiber supercapacitors. Adv Mater, 2015, 27: 4895–4901CrossRefGoogle Scholar
  36. 36.
    Padmajan Sasikala S, Lee KE, Lim J, et al. Interface-confined high crystalline growth of semiconducting polymers at graphene fibers for high-performance wearable supercapacitors. ACS Nano, 2017, 11: 9424–9434CrossRefGoogle Scholar
  37. 37.
    Wu X, Xu Y, Hu Y, et al. Microfluidic-spinning construction of black-phosphorus-hybrid microfibres for non-woven fabrics toward a high energy density flexible supercapacitor. Nat Commun, 2018, 9: 4573CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xuemei Fu (付雪梅)
    • 1
  • Zhuoer Li (黎卓尔)
    • 1
  • Limin Xu (许黎敏)
    • 1
  • Meng Liao (廖萌)
    • 1
  • Hao Sun (孙浩)
    • 2
  • Songlin Xie (解松林)
    • 1
  • Xuemei Sun (孙雪梅)
    • 1
  • Bingjie Wang (王兵杰)
    • 1
    Email author
  • Huisheng Peng (彭慧胜)
    • 1
    Email author
  1. 1.Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular ScienceFudan UniversityShanghaiChina
  2. 2.Department of ChemistryStanford UniversityCaliforniaUnited States of America

Personalised recommendations