Intrinsic exchange bias effect in strain-engineered single antiferromagnetic LaMnO3 films

  • Guowei Zhou (周国伟)
  • Huihui Ji (姬慧慧)
  • Yuhao Bai (白宇浩)
  • Zhiyong Quan (全志勇)
  • Xiaohong Xu (许小红)Email author


In this work, epitaxial growth of LaMnO3 thin films on different substrates using pulsed laser deposition under tensile and compressive strain was studied. The intrinsic exchange bias effect was observed in the single A-type antiferromagnetic LaMnO3 films no matter whether the tensile or compressive strain was supplied by the substrates. Due to the lattice mismatch between the film and different substrates, the intense strain can induce MnO6 octahedral rotation in the bottom region of the film neighboring the substrate, which leads to the distortion of MnO6 octahedron and the net magnetic behavior. However, the upper part maintains the original A-type antiferromagnetic order due to strain relaxation. The exchange bias effect in single films is attributed to the coupling between the bottom canted magnetic part and the upper antiferromagnetic region. The observation of exchange bias in single films on different substrates enables the emergence of a new class of biasing components in spintronics, which are based on strain-engineering.


magnetic insulating state exchange bias MnO6 octahedral rotation strain and interface effects magnetic properties 



本文用脉冲激光沉积系统外延生长了LaMnO3(LMO)薄膜, 研究了拉应力和压应力对薄膜磁学性质的影响, 发现在拉应力和压应力的衬底上, 外延生长这种A型反铁磁LMO薄膜, 均可出现交换偏置现象. 这是因为外应力导致衬底与薄膜界面处的MnO6氧八面体发生转动, 从而使临近衬底的LMO薄膜下层出现了净磁矩表现铁磁性; 而那些远离衬底的LMO薄膜上层则由于外应力的释放, 仍保持原有的反铁磁性. 因此, LMO薄膜中自发的交换偏置现象, 源于铁磁性与反铁磁性之间的交换耦合作用. 这种在单一LMO薄膜中实现交换偏置的现象, 为自旋阀器件的优化设计提供了一种新方法.



The authors acknowledge Beamline BL08U1A in Shanghai Synchrotron Radiation Facility (SSRF) and Beamline BL12-a in National Synchrotron Radiation Laboratory (NSRL) for X-ray absorption measurement at room temperature. This work was financially supported by the National Key R&D Program of China (2017YFB0405703), the National Natural Science Foundation of China (51871137, 61434002 and 51571136), and the Special Funds of Sanjin Scholars Program.


  1. 1.
    Meiklejohn WH, Bean CP. New magnetic anisotropy. Phys Rev, 1957, 105: 904–913CrossRefGoogle Scholar
  2. 2.
    Tulapurkar AA, Suzuki Y, Fukushima A, et al. Spin-torque diode effect in magnetic tunnel junctions. Nature, 2005, 438: 339–342CrossRefGoogle Scholar
  3. 3.
    Kools JCS. Exchange-biased spin-valves for magnetic storage. IEEE Trans Magn, 1996, 32: 3165–3184CrossRefGoogle Scholar
  4. 4.
    Jiang Y, Nozaki T, Abe S, et al. Substantial reduction of critical current for magnetization switching in an exchange-biased spin valve. Nat Mater, 2004, 3: 361–364CrossRefGoogle Scholar
  5. 5.
    Yu P, Lee JS, Okamoto S, et al. Interface ferromagnetism and orbital reconstruction in BiFeO3−La0.7Sr0.3MnO3 heterostructures. Phys Rev Lett, 2010, 105: 027201CrossRefGoogle Scholar
  6. 6.
    He C, Grutter AJ, Gu M, et al. Interfacial ferromagnetism and exchange bias in CaRuO3/CaMnO3 superlattices. Phys Rev Lett, 2012, 109: 197202CrossRefGoogle Scholar
  7. 7.
    Ding JF, Lebedev OI, Turner S, et al. Interfacial spin glass state and exchange bias in manganite bilayers with competing magnetic orders. Phys Rev B, 2013, 87: 054428CrossRefGoogle Scholar
  8. 8.
    Yu T, Ning XK, Liu W, et al. Exchange bias effect in epitaxial La0.67Ca0.33MnO3/SrMnO3 thin film structure. J Appl Phys, 2014, 116: 083908CrossRefGoogle Scholar
  9. 9.
    Kiwi M. Exchange bias theory. J Magn Magn Mater, 2001, 234: 584–595CrossRefGoogle Scholar
  10. 10.
    Cui B, Song C, Wang GY, et al. Strain engineering induced interfacial self-assembly and intrinsic exchange bias in a manganite perovskite film. Sci Rep, 2013, 3: 2542CrossRefGoogle Scholar
  11. 11.
    Cui B, Song C, Li F, et al. Tuning the entanglement between orbital reconstruction and charge transfer at a film surface. Sci Rep, 2014, 4: 4206CrossRefGoogle Scholar
  12. 12.
    Choi WS, Jeong DW, Jang SY, et al. LaMnO3 thin films grown by using pulsed laser deposition and their simple recovery to a stoichiometric phase by annealing. J Korean Phy Soc, 2011, 58: 569–574CrossRefGoogle Scholar
  13. 13.
    Ritter C, Ibarra MR, De Teresa JM, et al. Influence of oxygen content on the structural, magnetotransport, and magnetic properties of LaMnO3+δ. Phys Rev B, 1997, 56: 8902–8911CrossRefGoogle Scholar
  14. 14.
    Hou YS, Xiang HJ, Gong XG. Intrinsic insulating ferromagnetism in manganese oxide thin films. Phys Rev B, 2014, 89: 064415CrossRefGoogle Scholar
  15. 15.
    Zhou G, Yan Z, Bai Y, et al. Exchange bias effect and orbital reconstruction in (001)-oriented LaMnO3/LaNiO3 superlattices. ACS Appl Mater Interfaces, 2017, 9: 39855–39862CrossRefGoogle Scholar
  16. 16.
    Peng JJ, Song C, Cui B, et al. Exchange bias in a single LaMnO3 film induced by vertical electronic phase separation. Phys Rev B, 2014, 89: 165129CrossRefGoogle Scholar
  17. 17.
    Lee JS, Arena DA, Yu P, et al. Hidden magnetic configuration in epitaxial La1−xSrxMnO3 films. Phys Rev Lett, 2010, 105: 257204CrossRefGoogle Scholar
  18. 18.
    Grutter AJ, Vailionis A, Borchers JA, et al. Interfacial symmetry control of emergent ferromagnetism at the nanoscale. Nano Lett, 2016, 16: 5647–5651CrossRefGoogle Scholar
  19. 19.
    Wu L, Ma J, Ma J, et al. Exchange coupling-induced uniaxial anisotropy in La0.7Sr0.3MnO3 thin films. Sci Bull, 2016, 61: 157–162CrossRefGoogle Scholar
  20. 20.
    Gao Y, Wang J, Wu L, et al. Tunable magnetic and electrical behaviors in perovskite oxides by oxygen octahedral tilting. Sci China Mater, 2015, 58: 302–312CrossRefGoogle Scholar
  21. 21.
    Gibert M, Zubko P, Scherwitzl R, et al. Exchange bias in LaNiO3- LaMnO3 superlattices. Nat Mater, 2012, 11: 195–198CrossRefGoogle Scholar
  22. 22.
    Tian YF, Ding JF, Lin WN, et al. Anomalous exchange bias at collinear/noncollinear spin interface. Sci Rep, 2013, 3: 1094CrossRefGoogle Scholar
  23. 23.
    Orgiani P, Aruta C, Ciancio R, et al. Enhanced transport properties in LaxMnO3−δ thin films epitaxially grown on SrTiO3 substrates: The profound impact of the oxygen content. Appl Phys Lett, 2009, 95: 013510CrossRefGoogle Scholar
  24. 24.
    Galdi A, Aruta C, Orgiani P, et al. Magnetic properties and orbital anisotropy driven by Mn2+ in nonstoichiometric LaxMnO3−δ thin films. Phys Rev B, 2011, 83: 064418CrossRefGoogle Scholar
  25. 25.
    de Jong MP, Bergenti I, Dediu VA, et al. Evidence for Mn2+ ions at surfaces of La0.7Sr0.3MnO3 thin films. Phys Rev B, 2005, 71: 014434CrossRefGoogle Scholar
  26. 26.
    Valencia S, Gaupp A, Gudat W, et al. Mn valence instability in La2/3Ca1/3MnO3 thin films. Phys Rev B, 2006, 73: 104402CrossRefGoogle Scholar
  27. 27.
    Yi D, Liu J, Okamoto S, et al. Tuning the competition between ferromagnetism and antiferromagnetism in a half-doped manganite through magnetoelectric coupling. Phys Rev Lett, 2013, 111: 127601CrossRefGoogle Scholar
  28. 28.
    Galdi A, Aruta C, Orgiani P, et al. Electronic band redistribution probed by oxygen absorption spectra of (SrMnO3)n(LaMnO3)2n superlattices. Phys Rev B, 2012, 85: 125129CrossRefGoogle Scholar
  29. 29.
    Valencia S, Gaupp A, Gudat W, et al. Impact of microstructure on the Mn valence of La2/3Ca1/3MnO3 thin films. Phys Rev B, 2007, 75: 184431CrossRefGoogle Scholar
  30. 30.
    Zhou G, Song C, Bai Y, et al. Robust interfacial exchange bias and metal–insulator transition influenced by the LaNiO3 layer thickness in La0.7Sr0.3MnO3/LaNiO3 superlattices. ACS Appl Mater Interfaces, 2017, 9: 3156–3160CrossRefGoogle Scholar
  31. 31.
    Lee JH, Delaney KT, Bousquet E, et al. Strong coupling of Jahn- Teller distortion to oxygen-octahedron rotation and functional properties in epitaxially strained orthorhombic LaMnO3. Phys Rev B, 2013, 88: 174426CrossRefGoogle Scholar
  32. 32.
    Chou H, Tsai MH, Yuan FP, et al. Effects of strain on the electronic structures and TC’s of the La0.67Ca0.33MnO3 and La0.8Ba0.2MnO3 thin films deposited on SrTiO3. Appl Phys Lett, 2006, 89: 082511CrossRefGoogle Scholar
  33. 33.
    Wang XR, Li CJ, Lü WM, et al. Imaging and control of ferromagnetism in LaMnO3/SrTiO3 heterostructures. Science, 2015, 349: 716–719CrossRefGoogle Scholar
  34. 34.
    Coey JMD, Viret M, von Molnár S. Mixed-valence manganites. Adv Phys, 1999, 48: 167–293CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Guowei Zhou (周国伟)
    • 1
    • 2
  • Huihui Ji (姬慧慧)
    • 2
  • Yuhao Bai (白宇浩)
    • 1
    • 3
  • Zhiyong Quan (全志勇)
    • 1
    • 2
  • Xiaohong Xu (许小红)
    • 1
    • 2
    Email author
  1. 1.School of Chemistry and Materials Science, Key Laboratory of Magnetic Molecules and Magnetic Information Materials, Ministry of EducationShanxi Normal UniversityLinfenChina
  2. 2.Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and TechonologyLinfenChina
  3. 3.School of Physics and Electronic InformationShanxi Normal UniversityLinfenChina

Personalised recommendations