Science China Materials

, Volume 62, Issue 6, pp 885–891 | Cite as

Encapsulation of live cells by metal-organic frameworks for viability protection

  • Chao Sun (孙超)
  • Lin Chang (常琳)
  • Ke Hou (侯珂)
  • Shaoqin Liu (刘绍琴)
  • Zhiyong Tang (唐智勇)Email author


In this study, a yeast@ZIF-8 core–shell composite material was successfully synthesized under room temperature in aqueous solution. The ZIF-8 shell endowed the inner yeast cells with a considerably extended lifetime without any nutrients at 4°C. Compared with the bare yeast cells, most coated yeast cells were kept alive even when cultured in zymolyase solution for 3 h. Furthermore, the encapsulated yeast cells could be reactivated and regrown by dissolving the ZIF-8 shell with competitive coordination interactions.


live cells ZIF-8 viability protection 



在本文中, 沸石型金属有机框架材料ZIF-8在温和的条件下被成功包覆于活细胞酿酒酵母表面. ZIF-8壳层展示出对酿酒酵母细胞明显的保护作用. 与裸露酵母相比, 包覆酵母在4°C纯水中可以保持更长时间的代谢活性. 当包覆酵母和裸露酵母在酵母裂解酶存在的溶液中共同培养时, 包覆酵母仍然保持约80%的活性, 而裸露酵母则几乎全部死亡. 除此之外, 用EDTA将ZIF-8壳层溶解之后, 包覆的酵母仍然具有再生增殖能力, 且其生长曲线与裸露酵母类似.



This work was supported by the National Key Basic Research Program of China (2014CB931801 and 2016YFA0200700), the National Natural Science Foundation of China (2189038, 21721002 and 21475029), Frontier Science Key Project of Chinese Academy of Sciences (QYZDJ-SSW-SLH038), and K. C. Wong Education Foundation.

Supplementary material

40843_2018_9384_MOESM1_ESM.pdf (400 kb)
Encapsulation of live cells by metal-organic frameworks for viability protection


  1. 1.
    Wang B, Liu P, Tang R. Cellular shellization: surface engineering gives cells an exterior. BioEssays, 2010, 32: 698–708CrossRefGoogle Scholar
  2. 2.
    Léonard A, Dandoy P, Danloy E, et al. Whole-cell based hybrid materials for green energy production, environmental remediation and smart cell-therapy. Chem Soc Rev, 2011, 40: 860–885CrossRefGoogle Scholar
  3. 3.
    Wang G, Li X, Mo L, et al. Eggshell-inspired biomineralization generates vaccines that do not require refrigeration. Angew Chem, 2012, 124: 10728–10731CrossRefGoogle Scholar
  4. 4.
    Yang SH, Ko EH, Jung YH, et al. Bioinspired functionalization of silica-encapsulated yeast cells. Angew Chem, 2011, 123: 6239–6242CrossRefGoogle Scholar
  5. 5.
    Yang SH, Lee KB, Kong B, et al. Biomimetic encapsulation of individual cells with silica. Angew Chem Int Ed, 2009, 48: 9160–9163CrossRefGoogle Scholar
  6. 6.
    Park JH, Hong D, Lee J, et al. Cell-in-shell hybrids: chemical nanoencapsulation of individual cells. Acc Chem Res, 2016, 49: 792–800CrossRefGoogle Scholar
  7. 7.
    Li S, Dharmarwardana M, Welch RP, et al. Template-directed synthesis of porous and protective core-shell bionanoparticles. Angew Chem Int Ed, 2016, 55: 10691–10696CrossRefGoogle Scholar
  8. 8.
    Krol S, del Guerra S, Grupillo M, et al. Multilayer nanoencapsulation. New approach for immune protection of human pancreatic islets. Nano Lett, 2006, 6: 1933–1939CrossRefGoogle Scholar
  9. 9.
    Lee J, Choi J, Park JH, et al. Cytoprotective silica coating of individual mammalian cells through bioinspired silicification. Angew Chem Int Ed, 2014, 53: 8056–8059CrossRefGoogle Scholar
  10. 10.
    Kempaiah R, Salgado S, Chung WL, et al. Graphene as membrane for encapsulation of yeast cells: protective and electrically conducting. Chem Commun, 2011, 47: 11480–11482CrossRefGoogle Scholar
  11. 11.
    Wang B, Liu P, Jiang W, et al. Yeast cells with an artificial mineral shell: protection and modification of living cells by biomimetic mineralization. Angew Chem Int Ed, 2008, 47: 3560–3564CrossRefGoogle Scholar
  12. 12.
    Fakhrullin RF, Minullina RT. Hybrid cellular-inorganic core-shell microparticles: encapsulation of individual living cells in calcium carbonate microshells. Langmuir, 2009, 25: 6617–6621CrossRefGoogle Scholar
  13. 13.
    Ko EH, Yoon Y, Park JH, et al. Bioinspired, cytocompatible mineralization of silica-titania composites: thermoprotective nanoshell formation for individual Chlorella cells. Angew Chem Int Ed, 2013, 52: 12279–12282CrossRefGoogle Scholar
  14. 14.
    Konnova SA, Sharipova IR, Demina TA, et al. Biomimetic cellmediated three-dimensional assembly of halloysite nanotubes. Chem Commun, 2013, 49: 4208–4210CrossRefGoogle Scholar
  15. 15.
    Kuo WS, Wu CM, Yang ZS, et al. Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells. Chem Commun, 2008, 45: 4430CrossRefGoogle Scholar
  16. 16.
    Furukawa H, Cordova KE, O’Keeffe M, et al. The chemistry and applications of metal-organic frameworks. Science, 2013, 341: 1230444CrossRefGoogle Scholar
  17. 17.
    Saliba D, Ammar M, Rammal M, et al. Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives. J Am Chem Soc, 2018, 140: 1812–1823CrossRefGoogle Scholar
  18. 18.
    Zhuang JL, Ceglarek D, Pethuraj S, et al. Rapid room-temperature synthesis of metal-organic framework HKUST-1 crystals in bulk and as oriented and patterned thin films. Adv Funct Mater, 2011, 21: 1442–1447CrossRefGoogle Scholar
  19. 19.
    Wang Z, Hu S, Yang J, et al. Nanoscale Zr-based MOFs with tailorable size and introduced mesopore for protein delivery. Adv Funct Mater, 2018, 28: 1707356CrossRefGoogle Scholar
  20. 20.
    Qin JS, Yuan S, Lollar C, et al. Stable metal–organic frameworks as a host platform for catalysis and biomimetics. Chem Commun, 2018, 54: 4231–4249CrossRefGoogle Scholar
  21. 21.
    Wang C, Liu X, Keser Demir N, et al. Applications of water stable metal–organic frameworks. Chem Soc Rev, 2016, 45: 5107–5134CrossRefGoogle Scholar
  22. 22.
    Zhao M, Yuan K, Wang Y, et al. Metal–organic frameworks as selectivity regulators for hydrogenation reactions. Nature, 2016, 539: 76–80CrossRefGoogle Scholar
  23. 23.
    Zhao M, Deng K, He L, et al. Core–shell palladium nanoparticle@ metal–organic frameworks as multifunctional catalysts for cascade reactions. J Am Chem Soc, 2014, 136: 1738–1741CrossRefGoogle Scholar
  24. 24.
    Cai Y, Wu Y, Xuan T, et al. Core–shell Au@metal–organic frameworks for promoting raman detection sensitivity of methenamine. ACS Appl Mater Interfaces, 2018, 10: 15412–15417CrossRefGoogle Scholar
  25. 25.
    Wu X, Xiong S, Mao Z, et al. A designed ZnO@ZIF-8 core-shell nanorod film as a gas sensor with excellent selectivity for H2 over CO. Chem Eur J, 2017, 23: 7969–7975CrossRefGoogle Scholar
  26. 26.
    Zhan G, Fan L, Zhou S, et al. Fabrication of integrated Cu2O@HKUST-1@Au nanocatalysts via galvanic replacements toward alcohols oxidation application. ACS Appl Mater Interfaces, 2018, 10: 35234–35243CrossRefGoogle Scholar
  27. 27.
    Zhang D, Zhou W, Liu Q, et al. CH3NH3PbBr3 perovskite nanocrystals encapsulated in lanthanide metal–organic frameworks as a photoluminescence converter for anti-counterfeiting. ACS Appl Mater Interfaces, 2018, 10: 27875–27884CrossRefGoogle Scholar
  28. 28.
    Luo F, Lin Y, Zheng L, et al. Encapsulation of hemin in metal–organic frameworks for catalyzing the chemiluminescence reaction of the H2O2–luminol system and detecting glucose in the neutral condition. ACS Appl Mater Interfaces, 2015, 7: 11322–11329CrossRefGoogle Scholar
  29. 29.
    Liu G, Xu Y, Han Y, et al. Immobilization of lysozyme proteins on a hierarchical zeolitic imidazolate framework (ZIF-8). Dalton Trans, 2017, 46: 2114–2121CrossRefGoogle Scholar
  30. 30.
    Doonan C, Riccò R, Liang K, et al. Metal–organic frameworks at the biointerface: synthetic strategies and applications. Acc Chem Res, 2017, 50: 1423–1432CrossRefGoogle Scholar
  31. 31.
    Li P, Moon SY, Guelta MA, et al. Encapsulation of a nerve agent detoxifying enzyme by a mesoporous zirconium metal–organic framework engenders thermal and long-term stability. J Am Chem Soc, 2016, 138: 8052–8055CrossRefGoogle Scholar
  32. 32.
    Lian X, Erazo-Oliveras A, Pellois JP, et al. High efficiency and long-term intracellular activity of an enzymatic nanofactory based on metal-organic frameworks. Nat Commun, 2017, 8: 2075CrossRefGoogle Scholar
  33. 33.
    Chen WH, Vázquez-González M, Zoabi A, et al. Biocatalytic cascades driven by enzymes encapsulated in metal–organic framework nanoparticles. Nat Catal, 2018, 1: 689–695CrossRefGoogle Scholar
  34. 34.
    Mehta J, Bhardwaj N, Bhardwaj SK, et al. Recent advances in enzyme immobilization techniques: Metal-organic frameworks as novel substrates. Coord Chem Rev, 2016, 322: 30–40CrossRefGoogle Scholar
  35. 35.
    Tsumori N, Chen L, Wang Q, et al. Quasi-MOF: exposing inorganic nodes to guest metal nanoparticles for drastically enhanced catalytic activity. Chem, 2018, 4: 845–856CrossRefGoogle Scholar
  36. 36.
    Lian X, Fang Y, Joseph E, et al. Enzyme–MOF (metal–organic framework) composites. Chem Soc Rev, 2017, 46: 3386–3401CrossRefGoogle Scholar
  37. 37.
    Liang K, Richardson JJ, Doonan CJ, et al. An enzyme-coated metal-organic framework shell for synthetically adaptive cell survival. Angew Chem Int Ed, 2017, 56: 8510–8515CrossRefGoogle Scholar
  38. 38.
    Liang K, Richardson JJ, Cui J, et al. Metal-organic framework coatings as cytoprotective exoskeletons for living cells. Adv Mater, 2016, 28: 7910–7914CrossRefGoogle Scholar
  39. 39.
    Blackwell KJ, Singleton I, Tobin JM. Metal cation uptake by yeast: a review. Appl Microbiol Biotechnol, 1995, 43: 579–584CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Chao Sun (孙超)
    • 1
  • Lin Chang (常琳)
    • 2
  • Ke Hou (侯珂)
    • 2
  • Shaoqin Liu (刘绍琴)
    • 3
  • Zhiyong Tang (唐智勇)
    • 1
    • 2
    Email author
  1. 1.School of Material Science and EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.CAS Key Lab of Nanosystem and Hierarchy FabricationNational Center for Nanoscience and TechnologyBeijingChina
  3. 3.State Key Laboratory of Urban Water Resource and EnvironmentHarbin Institute of TechnologyHarbinChina

Personalised recommendations