Advertisement

Solution-processed amorphous gallium-tin oxide thin film for low-voltage, high-performance transistors

  • Jinhua Ren (任锦华)
  • Kaiwen Li (李凯文)
  • Jianwen Yang (杨建文)
  • Dong Lin (林东)
  • Haoqing Kang (康皓清)
  • Jingjing Shao (邵晶晶)
  • Ruofan Fu (傅若凡)
  • Qun Zhang (张群)Email author
Articles
  • 96 Downloads

Abstract

Gallium-tin oxide (GTO) semiconductor thin films were prepared by spin-coating with 2-methoxyethanol as the solvent. Their crystal structures, optical transparency, chemical states and surface morphologies, along with the electrical properties, were dependent on Ga contents and annealing temperatures. The optimized GTO channel layer was applied in the high-k Al2O3 thin film transistor (TFT) with a low operation voltage of 2 V, a maximum field-effect mobility of 69 cm2 V−1 s−1, a subthreshold swing (SS) of 76 mV dec−1, a threshold voltage of 0.67 V and an on-off current ratio of 1.8×107. The solution-processed amorphous- GTO-TFTs would promote the development of low-consumption, low-cost and high performance In-free TFT devices.

Keywords

GTO semiconductor films thin-film transistor stability Al2O3 dielectric 

溶液法制备低电压及高性能非晶GaSnO薄膜晶体管

Abstract

本文以乙二醇单甲醚为溶剂, 采用旋涂法制备了GaSnO半导体薄膜, 研究了不同Ga掺杂含量和退火温度条件下薄膜的晶体结构、 光学性质、化学价态和表面形貌信息, 同时研究了GaSnO薄膜晶体管的电学性质. 接着采用高k值的Al2O3薄膜作为介质层, 将上述优化好 的GaSnO薄膜作为沟道层, 制备了GaSnO/Al2O3薄膜晶体管. 实验研究发现, 器件的性能得到了显著的提升, 工作电压仅为2 V, 最大场效应 迁移率为69 cm2 V−1 s−1, 阈值电压为0.67 V, 电流开关比为1.8×107. 溶液法制备的非晶GaSnO薄膜晶体管可能会促进高性能无铟TFT器件 以及低功耗、低成本电子器件的开发.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61471126) and a grant from Science and Technology Commission of Shanghai Municipality (16JC1400603).

Supplementary material

40843_2018_9380_MOESM1_ESM.pdf (805 kb)
Solution-processed amorphous gallium-tin oxide thin film for low-voltage, high-performance transistors

References

  1. 1.
    Nomura K, Ohta H, Takagi A, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 2004, 432: 488–492CrossRefGoogle Scholar
  2. 2.
    Liu G, Liu A, Zhu H, et al. Low-temperature, nontoxic waterinduced metal-oxide thin films and their application in thin-film transistors. Adv Funct Mater, 2015, 25: 2564–2572CrossRefGoogle Scholar
  3. 3.
    Dong J, Han D, Li H, et al. Effect of Al doping on performance of ZnO thin film transistors. Appl Surf Sci, 2018, 433: 836–839CrossRefGoogle Scholar
  4. 4.
    Yang J, Ren J, Lin D, et al. Amorphous nickel incorporated tin oxide thin film transistors. J Phys D-Appl Phys, 2017, 50: 355103CrossRefGoogle Scholar
  5. 5.
    Haxel G, Hedrick JB, Orris GJ, et al. Rare earth elements: critical resources for high technology, US Geological Survey fact sheet 087–02. Technical report, US Geological Survey, 2002Google Scholar
  6. 6.
    Niang KM, Cho J, Heffernan S, et al. Optimisation of amorphous zinc tin oxide thin film transistors by remote-plasma reactive sputtering. J Appl Phys, 2016, 120: 085312CrossRefGoogle Scholar
  7. 7.
    Kyung-Chul Ok, Hyun-Jun Jeong, Hyun-Suk Kim, et al. Highly stable ZnON thin-film transistors with high field-effect mobility exceeding 50 cm2/Vs. IEEE Electron Device Lett, 2015, 36: 38–40CrossRefGoogle Scholar
  8. 8.
    Kamiya T, Nomura K, Hosono H. Subgap states, doping and defect formation energies in amorphous oxide semiconductor a-InGaZnO4 studied by density functional theory. Phys Status Solidi A, 2010, 207: 1698–1703CrossRefGoogle Scholar
  9. 9.
    Hosono H. Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application. J Non-Crystalline Solids, 2006, 352: 851–858CrossRefGoogle Scholar
  10. 10.
    Yang J, Meng T, Yang Z, et al. Investigation of tungsten doped tin oxide thin film transistors. J Phys D-Appl Phys, 2015, 48: 435108CrossRefGoogle Scholar
  11. 11.
    Yang J, Fu R, Han Y, et al. The stability of tin silicon oxide thinfilm transistors with different annealing temperatures. EPL, 2016, 115: 28006CrossRefGoogle Scholar
  12. 12.
    Yang J, Yang Z, Meng T, et al. Effects of silicon doping on the performance of tin oxide thin film transistors. Phys Status Solidi A, 2016, 213: 1010–1015CrossRefGoogle Scholar
  13. 13.
    Ross RC, Messier R. Microstructure and properties of RF-sputtered amorphous hydrogenated silicon films. J Appl Phys, 1981, 52: 5329–5339CrossRefGoogle Scholar
  14. 14.
    Yabuta H, Sano M, Abe K, et al. High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature RF-magnetron sputtering. Appl Phys Lett, 2006, 89: 112123CrossRefGoogle Scholar
  15. 15.
    Huang G, Duan L, Dong G, et al. High-mobility solutionprocessed tin oxide thin-film transistors with high-κ alumina dielectric working in enhancement mode. ACS Appl Mater Interfaces, 2014, 6: 20786–20794CrossRefGoogle Scholar
  16. 16.
    Jang J, Kitsomboonloha R, Swisher SL, et al. Transparent highperformance thin film transistors from solution-processed SnO2/ZrO2 gel-like precursors. Adv Mater, 2013, 25: 1042–1047CrossRefGoogle Scholar
  17. 17.
    Park JH, Choi WJ, Chae SS, et al. Structural and electrical properties of solution-processed gallium-doped indium oxide thin-film transistors. Jpn J Appl Phys, 2011, 50: 080202CrossRefGoogle Scholar
  18. 18.
    Park WJ, Shin HS, Ahn BD, et al. Investigation on doping dependency of solution-processed Ga-doped ZnO thin film transistor. Appl Phys Lett, 2008, 93: 083508CrossRefGoogle Scholar
  19. 19.
    Matsuda T, Umeda K, Kato Y, et al. Rare-metal-free highperformance Ga-Sn-O thin film transistor. Sci Rep, 2017, 7: 44326CrossRefGoogle Scholar
  20. 20.
    Zhang X, Lee H, Kim J, et al. Solution-processed gallium–tin-based oxide semiconductors for thin-film transistors. Materials, 2018, 11: 46CrossRefGoogle Scholar
  21. 21.
    Zhang YG, Huang GM, Duan L, et al. Full-solution-processed high mobility zinc-tin-oxide thin-film-transistors. Sci China Technol Sci, 2016, 59: 1407–1412CrossRefGoogle Scholar
  22. 22.
    Epifani M, Arbiol J, Díaz R, et al. Synthesis of SnO2 and ZnO colloidal nanocrystals from the decomposition of Tin(II) 2-ethylhexanoate and zinc(II) 2-ethylhexanoate. Chem Mater, 2005, 17: 6468–6472CrossRefGoogle Scholar
  23. 23.
    Park HW, Choi MJ, Jo Y, et al. Low temperature processed InGaZnO thin film transistor using the combination of hydrogen irradiation and annealing. Appl Surf Sci, 2014, 321: 520–524CrossRefGoogle Scholar
  24. 24.
    Li H, Qu M, Zhang Q. Influence of tungsten doping on the performance of indium–zinc–oxide thin-film transistors. IEEE Electron Device Lett, 2013, 34: 1268–1270CrossRefGoogle Scholar
  25. 25.
    Rim YS, Kim DL, Jeong WH, et al. Effect of Zr addition on ZnSnO thin-film transistors using a solution process. Appl Phys Lett, 2010, 97: 233502CrossRefGoogle Scholar
  26. 26.
    Tsaroucha M, Aksu Y, Irran E, et al. Synthesis of stannylsubstituted Zn4O4 cubanes as single-source precursors for amorphous tin-doped ZnO and Zn2SnO4 nanocrystals and their potential for thin film field effect transistor applications. Chem Mater, 2011, 23: 2428–2438CrossRefGoogle Scholar
  27. 27.
    Ide K, Kikuchi Y, Nomura K, et al. Effects of excess oxygen on operation characteristics of amorphous In-Ga-Zn-O thin-film transistors. Appl Phys Lett, 2011, 99: 093507CrossRefGoogle Scholar
  28. 28.
    Concepción P, Pérez Y, Hernández-Garrido JC, et al. The promotional effect of Sn-beta zeolites on platinum for the selective hydrogenation of α,β-unsaturated aldehydes. Phys Chem Chem Phys, 2013, 15: 12048–12055CrossRefGoogle Scholar
  29. 29.
    Lin T, Li X, Jang J. High performance p-type NiOx thin-film transistor by Sn doping. Appl Phys Lett, 2016, 108: 233503CrossRefGoogle Scholar
  30. 30.
    García Núñez C, Pau JL, Ruíz E, et al. Thin film transistors based on zinc nitride as a channel layer for optoelectronic devices. Appl Phys Lett, 2012, 101: 253501CrossRefGoogle Scholar
  31. 31.
    Fortunato E, Barquinha P, Martins R. Oxide semiconductor thinfilm transistors: A review of recent advances. Adv Mater, 2012, 24: 2945–2986CrossRefGoogle Scholar
  32. 32.
    Banger KK, Yamashita Y, Mori K, et al. Low-temperature, highperformance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process. Nat Mater, 2011, 10: 45–50CrossRefGoogle Scholar
  33. 33.
    Lee E, Ko J, Lim KH, et al. Gate capacitance-dependent field-effect mobility in solution-processed oxide semiconductor thin-film transistors. Adv Funct Mater, 2014, 24: 4689–4697CrossRefGoogle Scholar
  34. 34.
    Jeong S, Ha YG, Moon J, et al. Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors. Adv Mater, 2010, 22: 1346–1350CrossRefGoogle Scholar
  35. 35.
    Yang J, Pi S, Han Y, et al. Characteristic of bismuth-doped tin oxide thin-film transistors. IEEE Trans Electron Devices, 2016, 63: 1904–1909CrossRefGoogle Scholar
  36. 36.
    Mann JB, Meek TL, Allen LC. Configuration energies of the main group elements. J Am Chem Soc, 2000, 122: 2780–2783CrossRefGoogle Scholar
  37. 37.
    Shin SY, Moon YK, Kim WS, et al. Characterization of the SnO2 based thin film transistors with Ga, In and Hf doping. J Nanosci Nanotechnol, 2012, 12: 5459–5463CrossRefGoogle Scholar
  38. 38.
    Chen TC, Chang TC, Hsieh TY, et al. Investigating the degradation behavior caused by charge trapping effect under DC and AC gatebias stress for InGaZnO thin film transistor. Appl Phys Lett, 2011, 99: 022104CrossRefGoogle Scholar
  39. 39.
    Jeong JK, Won Yang H, Jeong JH, et al. Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors. Appl Phys Lett, 2008, 93: 123508CrossRefGoogle Scholar
  40. 40.
    Liu PT, Chou YT, Teng LF. Environment-dependent metastability of passivation-free indium zinc oxide thin film transistor after gate bias stress. Appl Phys Lett, 2009, 95: 233504CrossRefGoogle Scholar
  41. 41.
    Zhang H, Guo L, Wan Q. Nanogranular Al2O3 proton conducting films for low-voltage oxide-based homojunction thin-film transistors. J Mater Chem C, 2013, 1: 2781–2786CrossRefGoogle Scholar
  42. 42.
    Heo JS, Choi S, Jo JW, et al. Frequency-stable ionic-type hybrid gate dielectrics for high mobility solution-processed metal-oxide thin-film transistors. Materials, 2017, 10: 612CrossRefGoogle Scholar
  43. 43.
    Jeong S, Lee JY, Lee SS, et al. Metal salt-derived In–Ga–Zn–O semiconductors incorporating formamide as a novel co-solvent for producing solution-processed, electrohydrodynamic-jet printed, high performance oxide transistors. J Mater Chem C, 2013, 1: 4236–4243CrossRefGoogle Scholar
  44. 44.
    Branquinho R, Salgueiro D, Santos L, et al. Aqueous combustion synthesis of aluminum oxide thin films and application as gate dielectric in GZTO solution-based TFTs. ACS Appl Mater Interfaces, 2014, 6: 19592–19599CrossRefGoogle Scholar
  45. 45.
    Cao Q, Xia MG, Shim M, et al. Bilayer organic–inorganic gate dielectrics for high-performance, low-voltage, single-walled carbon nanotube thin-film transistors, complementary logic gates, and p–n diodes on plastic substrates. Adv Funct Mater, 2006, 16: 2355–2362CrossRefGoogle Scholar
  46. 46.
    Jiang Q, Lu J, Cheng J, et al. Combustion-process derived comparable performances of Zn–(In:Sn)–O thin-film transistors with a complete miscibility. Appl Phys Lett, 2014, 105: 132105CrossRefGoogle Scholar
  47. 47.
    Liu A, Liu G, Zhu H, et al. Eco-friendly, solution-processed In–W–O thin films and their applications in low-voltage, highperformance transistors. J Mater Chem C, 2016, 4: 4478–4484CrossRefGoogle Scholar
  48. 48.
    Xu W, Wang H, Xie F, et al. Facile and environmentally friendly solution-processed aluminum oxide dielectric for low-temperature, high-performance oxide thin-film transistors. ACS Appl Mater Interfaces, 2015, 7: 5803–5810CrossRefGoogle Scholar
  49. 49.
    Xu W, Wang H, Ye L, et al. The role of solution-processed high-κ gate dielectrics in electrical performance of oxide thin-film transistors. J Mater Chem C, 2014, 2: 5389–5396CrossRefGoogle Scholar
  50. 50.
    Zeumault A, Subramanian V. Mobility enhancement in solutionprocessed transparent conductive oxide TFTs due to electron donation from traps in high-k gate dielectrics. Adv Funct Mater, 2016, 26: 955–963CrossRefGoogle Scholar
  51. 51.
    Avis C, Jang J. High-performance solution processed oxide TFT with aluminum oxide gate dielectric fabricated by a sol–gel method. J Mater Chem, 2011, 21: 10649–10652CrossRefGoogle Scholar
  52. 52.
    Tiwari N, Rajput M, John RA, et al. Indium tungsten oxide thin films for flexible high-performance transistors and neuromorphic electronics. ACS Appl Mater Interfaces, 2018, 10: 30506–30513CrossRefGoogle Scholar
  53. 53.
    Park JS, Jeong JK, Mo YG, et al. Impact of high-k TiOx dielectric on device performance of indium-gallium-zinc oxide transistors. Appl Phys Lett, 2009, 94: 042105CrossRefGoogle Scholar
  54. 54.
    Li J, Zhou F, Lin HP, et al. SiOx interlayer to enhance theperformance of InGaZnO-TFT with AlOx gate insulator. Curr Appl Phys, 2012, 12: 1288–1291CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jinhua Ren (任锦华)
    • 1
  • Kaiwen Li (李凯文)
    • 1
  • Jianwen Yang (杨建文)
    • 1
  • Dong Lin (林东)
    • 1
  • Haoqing Kang (康皓清)
    • 1
  • Jingjing Shao (邵晶晶)
    • 1
  • Ruofan Fu (傅若凡)
    • 1
  • Qun Zhang (张群)
    • 1
    Email author
  1. 1.Department of Materials Science, National Engineering Laboratory for TFT-LCD Materials and TechnologiesFudan UniversityShanghaiChina

Personalised recommendations