Science China Materials

, Volume 62, Issue 6, pp 907–912 | Cite as

Anomalous low-temperature transport property of oxygen containing high-entropy Ti-Zr-Hf-Cu-Ni metallic glass thin films

  • Shaofan Zhao (赵少凡)Email author
  • Pengfei Wang (王鹏飞)
  • Xiang Cheng (程祥)
  • Yingqi Zhang (张盈琪)
  • Zhuoqun Wen (温卓群)
  • Qi Zhang (张琪)
  • Ke-Fu Yao (姚可夫)
  • Na Chen (陈娜)Email author
  • Wei-Hua Wang (汪卫华)



低温电输运特性是非晶态材料理论研究中的关键问题. 通过在Ti-Zr-Hf-Cu-Ni高熵非晶合金薄膜材料中掺入氧, 可以诱导其在低温下显示出异常的电输运行为. 低于8 K时, 掺氧高熵非晶合金薄膜的电阻率分别与温度和外加磁场强度的1/2次方即T1/2H1/2呈线性关系. 研究表明, 氧的掺入增强了高熵非晶合金薄膜中电子-电子间的库伦作用和电子自旋之间的交互作用, 从而导致含氧高熵非晶合金薄膜的 低温异常磁电输运行为. 因此我们可通过对高熵非晶合金材料掺氧实现对该材料低温导电性能的调控.



This work was supported by Qian Xuesen Laboratory of Space Technology and the National Natural Science Foundation of China (51471091).


  1. 1.
    Greer AL. Metallic glasses. Science, 1995, 267: 1947–1953CrossRefGoogle Scholar
  2. 2.
    Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater, 2000, 48: 279–306CrossRefGoogle Scholar
  3. 3.
    Chen N, Louzguine DV, Ranganathan S, et al. Formation ranges of icosahedral, amorphous and crystalline phases in rapidly solidified Ti–Zr–Hf–Ni alloys. Acta Mater, 2005, 53: 759–764CrossRefGoogle Scholar
  4. 4.
    Mooij JH. Electrical conduction in concentrated disordered transition metal alloys. Phys Stat Sol (a), 1973, 17: 521–530CrossRefGoogle Scholar
  5. 5.
    Cochrane RW, Harris R, Ström-Olson JO, et al. Structural manifestations in amorphous alloys: resistance minima. Phys Rev Lett, 1975, 35: 676–679CrossRefGoogle Scholar
  6. 6.
    Mizutani U, Yoshino K. Formation and low-temperature electronic properties of liquid-quenched Ag-Cu-X (X=Mg, Si, Sn and Sb) metallic glasses. J Phys F-Met Phys, 1984, 14: 1179–1192CrossRefGoogle Scholar
  7. 7.
    Chen AB, Weisz G, Sher A. Temperature dependence of the electron density of states and dc electrical resistivity of disordered binary alloys. Phys Rev B, 1972, 5: 2897–2924CrossRefGoogle Scholar
  8. 8.
    Anderson PW. Absence of diffusion in certain random lattices. Phys Rev, 1958, 109: 1492–1505CrossRefGoogle Scholar
  9. 9.
    Singh D, Singh D, Srivastava ON, et al. Microstructural effect on the low temperature transport properties of Ce–Al (Ga) metallic glasses. Scripta Mater, 2016, 118: 24–28CrossRefGoogle Scholar
  10. 10.
    Altshuler BL, Aronov AG. Electron-electorn interaction in disordered conductors. In: Efros AL, Pollak M (Eds.). New York: Elsevier Science Publishing Company, Inc., 1985, pp 4Google Scholar
  11. 11.
    Stillinger FH. A topographic view of supercooled liquids and glass formation. Science, 1995, 267: 1935–1939CrossRefGoogle Scholar
  12. 12.
    Luo P, Wen P, Bai HY, et al. Relaxation decoupling in metallic glasses at low temperatures. Phys Rev Lett, 2017, 118: 225901CrossRefGoogle Scholar
  13. 13.
    Zhu F, Nguyen HK, Song SX, et al. Intrinsic correlation between ß-relaxation and spatial heterogeneity in a metallic glass. Nat Commun, 2016, 7: 11516CrossRefGoogle Scholar
  14. 14.
    Debenedetti PG, Stillinger FH. Supercooled liquids and the glass transition. Nature, 2001, 410: 259–267CrossRefGoogle Scholar
  15. 15.
    Adam G, Gibbs JH. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys, 1965, 43: 139–146CrossRefGoogle Scholar
  16. 16.
    Stevenson JD, Schmalian J, Wolynes PG. The shapes of cooperatively rearranging regions in glass-forming liquids. Nat Phys, 2006, 2: 268–274CrossRefGoogle Scholar
  17. 17.
    Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6: 299–303CrossRefGoogle Scholar
  18. 18.
    Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci, 2014, 61: 1–93CrossRefGoogle Scholar
  19. 19.
    Zhao K, Xia XX, Bai HY, et al. Room temperature homogeneous flow in a bulk metallic glass with low glass transition temperature. Appl Phys Lett, 2011, 98: 141913CrossRefGoogle Scholar
  20. 20.
    Zhang W, Liaw PK, Zhang Y. Science and technology in highentropy alloys. Sci China Mater, 2018, 61: 2–22CrossRefGoogle Scholar
  21. 21.
    Zhao S, Wang H, Gu J, et al. High strain rate sensitivity of hardness in Ti-Zr-Hf-Be-(Cu/Ni) high entropy bulk metallic glasses. J Alloys Compd, 2018, 742: 312–317CrossRefGoogle Scholar
  22. 22.
    Wang X, Dai W, Zhang M, et al. Thermoplastic micro-formability of TiZrHfNiCuBe high entropy metallic glass. J Mater Sci Tech, 2018, 34: 2006–2013CrossRefGoogle Scholar
  23. 23.
    Cheng CY, Yeh JW. High-entropy BNbTaTiZr thin film with excellent thermal stability of amorphous structure and its electrical properties. Mater Lett, 2016, 185: 456–459CrossRefGoogle Scholar
  24. 24.
    Lu ZP, Bei H, Wu Y, et al. Oxygen effects on plastic deformation of a Zr-based bulk metallic glass. Appl Phys Lett, 2008, 92: 011915CrossRefGoogle Scholar
  25. 25.
    Li HX, Gao JE, Jiao ZB, et al. Glass-forming ability enhanced by proper additions of oxygen in a Fe-based bulk metallic glass. Appl Phys Lett, 2009, 95: 161905CrossRefGoogle Scholar
  26. 26.
    Gerstenberg D, Calbick CJ. Effects of nitrogen, methane, and oxygen on structure and electrical properties of thin tantalum films. J Appl Phys, 1964, 35: 402–407CrossRefGoogle Scholar
  27. 27.
    Liu W, Zhang H, Shi JA, et al. A room-temperature magnetic semiconductor from a ferromagnetic metallic glass. Nat Commun, 2016, 7: 13497CrossRefGoogle Scholar
  28. 28.
    Mueller R, Agyeman K, Tsuei CC. Negative-temperature coefficients of electrical resistivity in amorphous La-based alloys. Phys Rev B, 1980, 22: 2665–2669CrossRefGoogle Scholar
  29. 29.
    Lee PA, Ramakrishnan TV. Disordered electronic systems. Rev Mod Phys, 1985, 57: 287–337CrossRefGoogle Scholar
  30. 30.
    Manyala N, Sidis Y, DiTusa JF, et al. Magnetoresistance from quantum interference effects in ferromagnets. Nature, 2000, 404: 581–584CrossRefGoogle Scholar
  31. 31.
    Gale WF, Totemeir TC. Smithells Metals Reference Book, 8th Edition. (Ch. 8: Table 8.8e). New York: Elsevier Ltd. 2003Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shaofan Zhao (赵少凡)
    • 1
    Email author
  • Pengfei Wang (王鹏飞)
    • 1
  • Xiang Cheng (程祥)
    • 1
  • Yingqi Zhang (张盈琪)
    • 2
  • Zhuoqun Wen (温卓群)
    • 1
  • Qi Zhang (张琪)
    • 1
  • Ke-Fu Yao (姚可夫)
    • 2
  • Na Chen (陈娜)
    • 2
    Email author
  • Wei-Hua Wang (汪卫华)
    • 3
  1. 1.Qian Xuesen Laboratory of Space TechnologyBeijingChina
  2. 2.School of Materials Science and EngineeringTsinghua UniversityBeijingChina
  3. 3.Institute of PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations