Advertisement

Science China Materials

, Volume 62, Issue 5, pp 729–735 | Cite as

Organic single-crystal phototransistor with unique wavelength-detection characteristics

  • Mengxiao Hu (胡梦笑)
  • Jinyu Liu (刘金雨)
  • Qiang Zhao (赵强)
  • Dan Liu (刘单)
  • Qing Zhang (张晴)
  • Ke Zhou (周科)
  • Jie Li (李洁)
  • Huanli Dong (董焕丽)Email author
  • Wenping Hu (胡文平)
Articles
  • 66 Downloads

Abstract

Organic phototransistors based on high-quality 2,8-dichloro-5,11-dihexyl-indolo[3,2-b]carbazo (CHICZ) single crystals show the highest photoresponsivity of 3×103 A W−1, photosensitivity of 2×104 and the detectivity can achieve 8.4×1014 Jones. We also discovered good linear dependence of log(photosensitivity) versus the wavelength when the devices were illuminated with a series of sameintensity but different-wavelength lights. The organic phototransistors based on CHICZ single crystal have potential applications in wavelength-detection.

Keywords

organic phototransistor single crystal photoresponsivity photosensitivity wavelength-detection 

具有独特波长检测特性的有机单晶光电晶体管

摘要

高质量的2, 8 - 二氯- 5, 1 1 - 二己基- 吲哚[ 3, 2 -b] 咔唑(CHICZ)单晶被应用于光电晶体管, 并表现出高性能的光响应度 (Rmax=3×103 A W−1)和光敏感性(Pmax=2×104 以及Dmax*=8.4×1014 Jones). 此外, 我们首次发现当这些器件被一系列相同强度但不同波长的 光照亮时, 光敏度的对数与波长呈现非常好的线性关系. 这一现象为拓展有机光控晶体管在波长检测中的应用提供了新视角.

Notes

Acknowledgements

The authors acknowledge financial support from the Ministry of Science and Technology of China (2017YFA0204503 and 2016YFB0401100), the National Natural Science Foundation of China (51725304, 51633006, 51703159 and 51733004), and the Strategic Priority Research Program (XDB12030300) of the Chinese Academy of Sciences.

Supplementary material

40843_2018_9369_MOESM1_ESM.pdf (502 kb)
Organic single-crystal phototransistor with unique wavelength-detection characteristics

References

  1. 1.
    Gu P, Yao Y, Feng L, et al. Recent advances in polymer phototransistors. Polym Chem, 2015, 6: 7933–7944CrossRefGoogle Scholar
  2. 2.
    Guo Y, Yu G, Liu Y. Functional organic field-effect transistors. Adv Mater, 2010, 22: 4427–4447CrossRefGoogle Scholar
  3. 3.
    Wang H, Liu H, Zhao Q, et al. Three-component integrated ultrathin organic photosensors for plastic optoelectronics. Adv Mater, 2016, 28: 624–630CrossRefGoogle Scholar
  4. 4.
    Zhao G, Liu J, Meng Q, et al. High-performance UV-sensitive organic phototransistors based on benzo[1,2-b:4,5-b']dithiophene dimers linked with unsaturated bonds. Adv Electron Mater, 2015, 1: 1500071CrossRefGoogle Scholar
  5. 5.
    Hu, W. Organic Optoelectronics. Weinheim: Wiley-VCH, 2013CrossRefGoogle Scholar
  6. 6.
    Sekitani T, Zschieschang U, Klauk H, et al. Flexible organic transistors and circuits with extreme bending stability. Nat Mater, 2010, 9: 1015–1022CrossRefGoogle Scholar
  7. 7.
    Zhou B, Zhou J, Chen Y, et al. Performance improvement of organic phototransistors by using polystyrene microspheres. Sci China Mater, 2018, 61: 737–744CrossRefGoogle Scholar
  8. 8.
    Li Q, Ding S, Zhu W, et al. Recent advances in one-dimensional organic p–n heterojunctions for optoelectronic device applications. J Mater Chem C, 2016, 4: 9388–9398CrossRefGoogle Scholar
  9. 9.
    Wang C, Ren X, Xu C, et al. N-type 2D organic single crystals for high-performance organic field-effect transistors and near-infrared phototransistors. Adv Mater, 2018, 30: 1706260CrossRefGoogle Scholar
  10. 10.
    Qin X, Dong H, Hu W. Green light-emitting diode from bromine based organic-inorganic halide perovskite. Sci China Mater, 2015, 58: 186–191CrossRefGoogle Scholar
  11. 11.
    Wang C, Dong H, Jiang L, et al. Organic semiconductor crystals. Chem Soc Rev, 2018, 47: 422–500CrossRefGoogle Scholar
  12. 12.
    Dong H, Yan Q, Hu W, et al. Multilevel investigation of charge transport in conjugated polymers-new opportunities in polymer electronics. Acta Polym Sin, 2017, 8: 1246–1260Google Scholar
  13. 13.
    Kim D, Lee D, Lee H, et al. High-mobility organic transistors based on single-crystalline microribbons of triisopropylsilylethynyl pentacene via solution-phase self-assembly. Adv Mater, 2007, 19: 678–682CrossRefGoogle Scholar
  14. 14.
    Reese C, Bao Z. Organic single-crystal field-effect transistors. Mater Today, 2007, 10: 20–27CrossRefGoogle Scholar
  15. 15.
    Li Q, Liu S, Chen H, et al. Alignment and patterning of organic single crystals for field-effect transistors. Chin Chem Lett, 2016, 27: 1421–1428CrossRefGoogle Scholar
  16. 16.
    Wu J, Li Q, Xue G, et al. Preparation of single-crystalline heterojunctions for organic electronics. Adv Mater, 2017, 29: 1606101CrossRefGoogle Scholar
  17. 17.
    Yang F, Cheng S, Zhang X, et al. 2D organic materials for optoelectronic applications. Adv Mater, 2018, 30: 1702415CrossRefGoogle Scholar
  18. 18.
    Zhou K, Chen H, Dong H, et al. Comparable charge transport property based on S···S interactions with that of p-p stacking in a bis-fused tetrathiafulvalene compound. Sci China Chem, 2017, 60: 510–515CrossRefGoogle Scholar
  19. 19.
    Gu P, Yao Y, Dong H, et al. Preparation, characterization and field effect transistor applications of conjugated polymer micro/nanocrystal. Acta Polym Sin, 2014, 30: 1029–1040Google Scholar
  20. 20.
    Zhao G, Dong H, Jiang L, et al. Single crystal field-effect transistors containing a pentacene analogue and their application in ethanol vapor detection. Appl Phys Lett, 2012, 101: 103302CrossRefGoogle Scholar
  21. 21.
    Laudise RA, Bridenbaugh PM, Kloc C, et al. Organo-thermal crystal growth of a6 thiophene. J Cryst Growth, 1997, 178: 585–592CrossRefGoogle Scholar
  22. 22.
    Jiang L, Gao J, Wang E, et al. Organic single-crystalline ribbons of a rigid “H”-type anthracene derivative and high-performance, short-channel field-effect transistors of individual micro/nanometer-sized ribbons fabricated by an “organic ribbon mask” technique. Adv Mater, 2008, 20: 2735–2740CrossRefGoogle Scholar
  23. 23.
    Zhao G, Dong H, Zhao H, et al. Substitution effect on molecular packing and transistor performance of indolo[3,2-b]carbazole derivatives. J Mater Chem, 2012, 22: 4409–4417CrossRefGoogle Scholar
  24. 24.
    Li J, Zhou K, Liu J, et al. Aromatic extension at 2,6-positions of anthracene toward an elegant strategy for organic semiconductors with efficient charge transport and strong solid state emission. J Am Chem Soc, 2017, 139: 17261–17264CrossRefGoogle Scholar
  25. 25.
    Dong H, Bo Z, Hu W. High performance phototransistors of a planar conjugated copolymer. Macromol Rapid Commun, 2011, 32: 649–653CrossRefGoogle Scholar
  26. 26.
    Dong H, Li H, Wang E, et al. Phototransistors of a rigid rod conjugated polymer. J Phys Chem C, 2008, 112: 19690–19693CrossRefGoogle Scholar
  27. 27.
    Yang X, Li Q, Hu G, et al. Controlled synthesis of high-quality crystals of monolayer MoS2 for nanoelectronic device application. Sci China Mater, 2016, 59: 182–190CrossRefGoogle Scholar
  28. 28.
    Gong X, Tong M, Xia Y, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science, 2009, 325: 1665–1667CrossRefGoogle Scholar
  29. 29.
    Wang C, Liu Y, Wei Z, et al. Biphase micro/nanometer sized single crystals of organic semiconductors: control synthesis and their strong phase dependent optoelectronic properties. Appl Phys Lett, 2010, 96: 143302CrossRefGoogle Scholar
  30. 30.
    Kakinuma T, Kojima H, Kawamoto T, et al. Giant phototransistor response in dithienyltetrathiafulvalene derivatives. J Mater Chem C, 2013, 1: 2900–2905CrossRefGoogle Scholar
  31. 31.
    Baeg KJ, Binda M, Natali D, et al. Organic light detectors: photodiodes and phototransistors. Adv Mater, 2013, 25: 4267–4295CrossRefGoogle Scholar
  32. 32.
    Noh YY, Kim DY, Yoshida Y, et al. High-photosensitivity pchannel organic phototransistors based on a biphenyl end-capped fused bithiophene oligomer. Appl Phys Lett, 2005, 86: 043501CrossRefGoogle Scholar
  33. 33.
    Noh YY, Ghim J, Kang SJ, et al. Effect of light irradiation on the characteristics of organic field-effect transistors. J Appl Phys, 2006, 100: 094501CrossRefGoogle Scholar
  34. 34.
    Lucas B, El Amrani A, Chakaroun M, et al. Ultraviolet light effect on electrical properties of a flexible organic thin film transistor. Thin Solid Films, 2009, 517: 6280–6282CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mengxiao Hu (胡梦笑)
    • 1
    • 2
  • Jinyu Liu (刘金雨)
    • 2
  • Qiang Zhao (赵强)
    • 2
  • Dan Liu (刘单)
    • 1
    • 2
  • Qing Zhang (张晴)
    • 2
  • Ke Zhou (周科)
    • 2
  • Jie Li (李洁)
    • 2
  • Huanli Dong (董焕丽)
    • 1
    • 2
    Email author
  • Wenping Hu (胡文平)
    • 2
    • 3
  1. 1.Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of ChemistryCapital Normal UniversityBeijingChina
  2. 2.Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of ChemistryChinese Academy of SciencesBeijingChina
  3. 3.Department of Chemistry, School of Science, Collaborative Innovation Center of Chemical Science and EngineeringTianjin UniversityTianjinChina

Personalised recommendations