Advertisement

Science China Materials

, Volume 62, Issue 5, pp 645–652 | Cite as

Packed anode derived from cocklebur fruit for improving long-term performance of microbial fuel cells

  • Cuicui Yang (杨翠翠)
  • Mengjie Chen (陈梦洁)
  • Yijun Qian (钱翊钧)
  • Lu Zhang (张露)
  • Min Lu (闾敏)Email author
  • Xiaoji Xie (谢小吉)Email author
  • Ling Huang (黄岭)
  • Wei Huang (黄维)
Articles
  • 97 Downloads

Abstract

Packed anode of microbial fuel cells (MFCs), commonly with a dense structure, suffers from the clogging, resulting in unsatisfied long-term stability of MFCs. Herein, we fabricate a biochar-based packed anode with a loose structure to enhance the long-term performance of MFCs equipped with packed anodes. The biochar, derived from cocklebur fruit, endows the packed anode with a loose structure but excellent conductivity. Once incorporated into MFCs, the biochar-based packed anode can yield comparable performance to benchmark materials. Particularly, the biochar-based MFCs present no obvious decrease of the power output during 150 days’ operation, which is attributed to the clogging-resistant effect induced by the loose structure of biochar-based anode. The cocklebur fruit-derived biochar can be a promising candidate for MFC anodes, and should facilitate both scaling-up and practical applications of MFCs.

Keywords

microbial fuel cells biochar cocklebur fruit packed anode long-term stability 

基于苍耳子的堆积型疏松阳极用于提升微生物燃料电池的长期运行性能

摘要

基于堆积型阳极的微生物燃料电池因材料成本低且在大型反应器中适用性强, 在实际应用中具有较好前景. 但是, 堆积结构常带来 堵塞问题, 因此基于堆积型阳极的微生物燃料电池通常稳定性较差. 本文中, 我们用生物炭堆积的疏松阳极来提升堆积型阳极微生物燃料 电池的长期稳定性. 生物炭由苍耳子直接炭化获得, 保持了苍耳子特殊的外形, 保证了其在制备成堆积型阳极后具有疏松的结构和良好的 导电性. 用于微生物燃料电池时, 该生物炭堆积型阳极获得了与常用的活性炭材料堆积阳极相当的产电性能, 且该燃料电池在150天的运 行时间内产电性能无明显下降, 而作为参照的活性炭堆积阳极燃料电池的性能呈现极大下降. 这种良好的稳定性是因为生物炭堆积阳极 的疏松结构减少了长期运行过程中的堵塞现象. 这种基于苍耳子的生物炭材料可以作为高效稳定的微生物燃料电池阳极材料, 有望在实 际应用中大型化长期运行.

Notes

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFA0207201), the National Natural Science Foundation of China (21507059), the Natural Science Foundation of Jiangsu Province (BK20150948), Six Talent Peaks Project in Jiangsu Province (JNHB-038), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education, and Young Elite Scientists Sponsorship Program by CAST (2017QNRC001).

Supplementary material

40843_2018_9368_MOESM1_ESM.pdf (1.2 mb)
Packed Anode Derived from Cocklebur Fruit for Improving Long-term Performance of Microbial Fuel Cells

References

  1. 1.
    Logan BE, Rabaey K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science, 2012, 337: 686–690CrossRefGoogle Scholar
  2. 2.
    Sun M, Zhai LF, Li WW, et al. Harvest and utilization of chemical energy in wastes by microbial fuel cells. Chem Soc Rev, 2016, 45: 2847–2870CrossRefGoogle Scholar
  3. 3.
    Lu M, Qian Y, Huang L, et al. Improving the performance of microbial fuel cells through anode manipulation. ChemPlusChem, 2015, 80: 1216–1225CrossRefGoogle Scholar
  4. 4.
    Li S, Cheng C, Thomas A. Carbon-based microbial-fuel-cell electrodes: from conductive supports to active catalysts. Adv Mater, 2017, 29: 1602547CrossRefGoogle Scholar
  5. 5.
    Ci S, Cai P, Wen Z, et al. Graphene-based electrode materials for microbial fuel cells. Sci China Mater, 2015, 58: 496–509CrossRefGoogle Scholar
  6. 6.
    Xie Y, Ma Z, Song H, et al. Melamine modified carbon felts anode with enhanced electrogenesis capacity toward microbial fuel cells. J Energy Chem, 2017, 26: 81–86CrossRefGoogle Scholar
  7. 7.
    Pang S, Gao Y, Choi S. Flexible and stretchable microbial fuel cells with modified conductive and hydrophilic textile. Biosens Bioelectron, 2018, 100: 504–511CrossRefGoogle Scholar
  8. 8.
    Tao Y, Liu Q, Chen J, et al. Hierarchically three-dimensional nanofiber based textile with high conductivity and biocompatibility as a microbial fuel cell anode. Environ Sci Technol, 2016, 50: 7889–7895CrossRefGoogle Scholar
  9. 9.
    Jiang D, Li B. Granular activated carbon single-chamber microbial fuel cells (GAC-SCMFCs): A design suitable for large-scale wastewater treatment processes. Biochem Eng J, 2009, 47: 31–37CrossRefGoogle Scholar
  10. 10.
    Wu S, Li H, Zhou X, et al. A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment. Water Res, 2016, 98: 396–403CrossRefGoogle Scholar
  11. 11.
    Rabaey K, Clauwaert P, Aelterman P, et al. Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol, 2005, 39: 8077–8082CrossRefGoogle Scholar
  12. 12.
    Huggins T, Wang H, Kearns J, et al. Biochar as a sustainable electrode material for electricity production in microbial fuel cells. Bioresource Tech, 2014, 157: 114–119CrossRefGoogle Scholar
  13. 13.
    Zhou Y, Zhou G, Yin L, et al. High-performance carbon anode derived from sugarcane for packed microbial fuel cells. Chem-ElectroChem, 2017, 4: 168–174Google Scholar
  14. 14.
    Logan BE. Microbial Fuel Cells. Hoboken: John Wiley & Sons, Inc., 2007CrossRefGoogle Scholar
  15. 15.
    Rabaey K, Clauwaert P, Aelterman P, et al. Bioelectrochemical Systems: From Extracellular Electron Transfer to Biotechnological Application. London: IWA Publishing, 2009Google Scholar
  16. 16.
    Wang H, Davidson M, Zuo Y, et al. Recycled tire crumb rubber anodes for sustainable power production in microbial fuel cells. J Power Sources, 2011, 196: 5863–5866CrossRefGoogle Scholar
  17. 17.
    Lu M, Qian Y, Yang C, et al. Nitrogen-enriched pseudographitic anode derived from silk cocoon with tunable flexibility for microbial fuel cells. Nano Energy, 2017, 32: 382–388CrossRefGoogle Scholar
  18. 18.
    Lovley DR, Phillips EJP. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol, 1988, 54: 1472–1480Google Scholar
  19. 19.
    Liu L, Tsyganova O, Lee DJ, et al. Anodic biofilm in singlechamber microbial fuel cells cultivated under different temperatures. Int J Hydrogen Energy, 2012, 37: 15792–15800CrossRefGoogle Scholar
  20. 20.
    Velasquez-Orta SB, Curtis TP, Logan BE. Energy from algae using microbial fuel cells. Biotechnol Bioeng, 2009, 103: 1068–1076CrossRefGoogle Scholar
  21. 21.
    Feng C, Lv Z, Yang X, et al. Anode modification with capacitive materials for a microbial fuel cell: an increase in transient power or stationary power. Phys Chem Chem Phys, 2014, 16: 10464–10472CrossRefGoogle Scholar
  22. 22.
    Hu B, Wang K, Wu L, et al. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater, 2010, 22: 813–828CrossRefGoogle Scholar
  23. 23.
    Imtiaz S, Zhang J, Zafar ZA, et al. Biomass-derived nanostructured porous carbons for lithium-sulfur batteries. Sci China Mater, 2016, 59: 389–407CrossRefGoogle Scholar
  24. 24.
    Jian M, Wang C, Wang Q, et al. Advanced carbon materials for flexible and wearable sensors. Sci China Mater, 2017, 60: 1026–1062CrossRefGoogle Scholar
  25. 25.
    Chen S, Tang J, Jing X, et al. A hierarchically structured urchin-like anode derived from chestnut shells for microbial energy harvesting. Electrochim Acta, 2016, 212: 883–889CrossRefGoogle Scholar
  26. 26.
    Marsili E, Baron DB, Shikhare ID, et al. Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA, 2008, 105: 3968–3973CrossRefGoogle Scholar
  27. 27.
    Wu D, Xing D, Lu L, et al. Ferric iron enhances electricity generation by Shewanella oneidensis MR-1 in MFCs. Bioresource Tech, 2013, 135: 630–634CrossRefGoogle Scholar
  28. 28.
    Li WW, Yu HQ, He Z. Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ Sci, 2014, 7: 911–924CrossRefGoogle Scholar
  29. 29.
    Mao Y, Quan X, Zhao H, et al. Accelerated startup of moving bed biofilm process with novel electrophilic suspended biofilm carriers. Chem Eng J, 2017, 315: 364–372CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Cuicui Yang (杨翠翠)
    • 1
  • Mengjie Chen (陈梦洁)
    • 1
  • Yijun Qian (钱翊钧)
    • 1
  • Lu Zhang (张露)
    • 1
  • Min Lu (闾敏)
    • 1
    Email author
  • Xiaoji Xie (谢小吉)
    • 1
    Email author
  • Ling Huang (黄岭)
    • 1
  • Wei Huang (黄维)
    • 1
    • 2
  1. 1.Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)NanjingChina
  2. 2.Shaanxi Institute of Flexible ElectronicsNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations