Advertisement

Science China Materials

, Volume 62, Issue 2, pp 273–282 | Cite as

Ultrathin yet transferrable Pt- or PtRu-decorated graphene films as efficient electrocatalyst for methanol oxidation reaction

  • Zhuchen Tao (陶柱晨)
  • Wei Chen (陈微)
  • Jing Yang (杨晶)
  • Xiangyang Wang (王向阳)
  • Ziqi Tan (谈紫琪)
  • Jianglin Ye (叶江林)
  • Yanxia Chen (陈艳霞)Email author
  • Yanwu Zhu (朱彦武)Email author
Letters
  • 112 Downloads

超薄可转移的铂和铂钌修饰的石墨烯薄膜作为高效甲醇氧化催化剂

摘要

从氧化石墨中获得石墨烯材料在负载金属催化剂中具有很大的应用潜力, 但在通过化学气相沉积制备的高质量石墨烯(CVDG)上 均匀负载金属纳米粒子仍然是一个挑战. 我们成功制备了在CVDG上均匀负载具有约3.3 nm尺寸的铂纳米粒子的超薄复合薄膜(Pt-CVDG), 并且这种薄膜可通过类似CVDG转移的方法转移到目标衬底上. Pt-CVDG薄膜在甲醇催化氧化中表现出优异的性能, 具有高达 94.1 m2 g−1Pt的电化学活性表面积, 并且在0.7 V下具有293.1 mA mg−1 Pt的高质量活性电流密度, 该电流密度几乎是相同条件下商业Pt/C的 两倍. 此外, 为进一步提高催化性能, 将钌沉积到Pt-CVDG薄膜上, 在Ru覆盖率达到50%时得到比原始样品高2倍的催化电流密度且催化起始电位降低0.2 V. 同时这种基于CVDG的复合薄膜为评估Pt NPs-碳杂化催化剂性能的极限提供了一个简单模型.

Notes

Acknowledgements

We acknowledge the support from the National Natural Science Foundation of China (51322204 and 51772282), the National Program on Key Basic Research Project (973 Program and 2015CB932300) and the Fundamental Research Funds for the Central Universities (WK2060140014 and WK2060140017).

Supplementary material

40843_2018_9366_MOESM1_ESM.pdf (2.4 mb)
Ultrathin yet Transferrable Pt- or PtRu- Decorated Graphene Films as Efficient Electrocatalysts for Methanol Oxidation Reaction

References

  1. 1.
    Reddington E, Sapienza A, Gurau B, et al. Combinatorial electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalysts. Science, 1998, 280: 1735–1737CrossRefGoogle Scholar
  2. 2.
    Paik Y, Kim SS, Han OH. Methanol behavior in direct methanol fuel cells. Angew Chem Int Ed, 2008, 47: 94–96CrossRefGoogle Scholar
  3. 3.
    Tiwari JN, Tiwari RN, Singh G, et al. Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells. Nano Energy, 2013, 2: 553–578CrossRefGoogle Scholar
  4. 4.
    Bahrami H, Faghri A. Review and advances of direct methanol fuel cells: Part II: Modeling and numerical simulation. J Power Sources, 2013, 230: 303–320CrossRefGoogle Scholar
  5. 5.
    Tian XL, Wang L, Deng P, et al. Research advances in unsupported Pt-based catalysts for electrochemical methanol oxidation. J Energy Chem, 2017, 26: 1067–1076CrossRefGoogle Scholar
  6. 6.
    Li M, Zhao Z, Cheng T, et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science, 2016, 354: 1414–1419CrossRefGoogle Scholar
  7. 7.
    Cao D, Lu GQ, Wieckowski A, et al. Mechanisms of methanol decomposition on platinum: a combined experimental and ab initio approach. J Phys Chem B, 2005, 109: 11622–11633CrossRefGoogle Scholar
  8. 8.
    Chen YX, Miki A, Ye S, et al. Formate, an active intermediate for direct oxidation of methanol on Pt electrode. J Am Chem Soc, 2003, 125: 3680–3681CrossRefGoogle Scholar
  9. 9.
    Xue Q, Xu G, Mao R, et al. Polyethyleneimine modified AuPd@PdAu alloy nanocrystals as advanced electrocatalysts towards the oxygen reduction reaction. J Energy Chem, 2017, 26: 1153–1159CrossRefGoogle Scholar
  10. 10.
    Ma SY, Li HH, Hu BC, et al. Synthesis of low Pt-based quaternary PtPdRuTe nanotubes with optimized incorporation of Pd for enhanced electrocatalytic activity. J Am Chem Soc, 2017, 139: 5890–5895CrossRefGoogle Scholar
  11. 11.
    Wei ZD, Li LL, Luo YH, et al. Electrooxidation of methanol on upd-Ru and upd-Sn modified Pt electrodes. J Phys Chem B, 2006, 110: 26055–26061CrossRefGoogle Scholar
  12. 12.
    Yao Y, Cai J, Zheng Y, et al. Preparation of surfactant-free Pt and PtRu nanoparticles with high activity for methanol oxidation. Chin J Chem Phys, 2014, 27: 332–336CrossRefGoogle Scholar
  13. 13.
    Fu QQ, Li HH, Ma SY, et al. A mixed-solvent route to unique PtAuCu ternary nanotubes templated from Cu nanowires as efficient dual electrocatalysts. Sci China Mater, 2016, 59: 112–121CrossRefGoogle Scholar
  14. 14.
    Petrii OA. Pt–Ru electrocatalysts for fuel cells: a representative review. J Solid State Electrochem, 2008, 12: 609–642CrossRefGoogle Scholar
  15. 15.
    Tao Q, Chen W, Yao Y, et al. Study on methanol oxidation at Pt and PtRu electrodes by combining in situ infrared spectroscopy and differential electrochemical mass spectrometry. Chin J Chem Phys, 2014, 27: 541–547CrossRefGoogle Scholar
  16. 16.
    Chatterjee M, Chatterjee A, Ghosh S, et al. Electro-oxidation of ethanol and ethylene glycol on carbon-supported nano-Pt and -PtRu catalyst in acid solution. Electrochim Acta, 2009, 54: 7299–7304CrossRefGoogle Scholar
  17. 17.
    Frelink T, Visscher W, van Veen JAR. Measurement of the Ru surface content of electrocodeposited PtRu electrodes with the electrochemical quartz crystal microbalance: implications for methanol and CO electrooxidation. Langmuir, 1996, 12: 3702–3708CrossRefGoogle Scholar
  18. 18.
    Coutanceau C, Rakotondrainibé AF, Lima A, et al. Preparation of Pt–Ru bimetallic anodes by galvanostatic pulse electrodeposition: characterization and application to the direct methanol fuel cell. J Appl Electrochem, 2004, 34: 61–66CrossRefGoogle Scholar
  19. 19.
    Huang H, Sun D, Wang X. Low-defect MWNT–Pt nanocomposite as a high performance electrocatalyst for direct methanol fuel cells. J Phys Chem C, 2011, 115: 19405–19412CrossRefGoogle Scholar
  20. 20.
    Jiang H, Zhao T, Li C, et al. Functional mesoporous carbon nanotubes and their integration in situ with metal nanocrystals for enhanced electrochemical performances. Chem Commun, 2011, 47: 8590–8592CrossRefGoogle Scholar
  21. 21.
    Zhang H, Ren W, Guan C, et al. Pt decorated 3D vertical graphene nanosheet arrays for efficient methanol oxidation and hydrogen evolution reactions. J Mater Chem A, 2017, 5: 22004–22011CrossRefGoogle Scholar
  22. 22.
    Huang W, Wang H, Zhou J, et al. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum–nickel hydroxide–graphene. Nat Commun, 2015, 6: 10035CrossRefGoogle Scholar
  23. 23.
    Dong L, Gari RRS, Li Z, et al. Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon, 2010, 48: 781–787CrossRefGoogle Scholar
  24. 24.
    Li Y, Gao W, Ci L, et al. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon, 2010, 48: 1124–1130CrossRefGoogle Scholar
  25. 25.
    Guo S, Dong S, Wang E. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano, 2010, 4: 547–555CrossRefGoogle Scholar
  26. 26.
    Gotterbarm K, Späth F, Bauer U, et al. Reactivity of graphenesupported Pt nanocluster arrays. ACS Catal, 2015, 5: 2397–2403CrossRefGoogle Scholar
  27. 27.
    Huang H, Yang S, Vajtai R, et al. Pt-decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts. Adv Mater, 2014, 26: 5160–5165CrossRefGoogle Scholar
  28. 28.
    Bo X, Guo L. Simple synthesis of macroporous carbon–graphene composites and their use as a support for Pt electrocatalysts. Electrochim Acta, 2013, 90: 283–290CrossRefGoogle Scholar
  29. 29.
    Choi SM, Seo MH, Kim HJ, et al. Synthesis of surfacefunctionalized graphene nanosheets with high Pt-loadings and their applications to methanol electrooxidation. Carbon, 2011, 49: 904–909CrossRefGoogle Scholar
  30. 30.
    Huang H, Chen H, Sun D, et al. Graphene nanoplate-Pt composite as a high performance electrocatalyst for direct methanol fuel cells. J Power Sources, 2012, 204: 46–52CrossRefGoogle Scholar
  31. 31.
    Li Y, Tang L, Li J. Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites. Electrochem Commun, 2009, 11: 846–849CrossRefGoogle Scholar
  32. 32.
    Zhang LS, Liang XQ, Song WG, et al. Identification of the nitrogen species on N-doped graphene layers and Pt/NG composite catalyst for direct methanol fuel cell. Phys Chem Chem Phys, 2010, 12: 12055CrossRefGoogle Scholar
  33. 33.
    Bagri A, Mattevi C, Acik M, et al. Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem, 2010, 2: 581–587CrossRefGoogle Scholar
  34. 34.
    Pei S, Cheng HM. The reduction of graphene oxide. Carbon, 2012, 50: 3210–3228CrossRefGoogle Scholar
  35. 35.
    Li N, Cao M, Hu C. Review on the latest design of graphene-based inorganic materials. Nanoscale, 2012, 4: 6205–6218CrossRefGoogle Scholar
  36. 36.
    Yao Y, Chen W, Du Y, et al. An electrochemical in situ infrared spectroscopic study of graphene/electrolyte interface under attenuated total reflection configuration. J Phys Chem C, 2015, 119: 22452–22459CrossRefGoogle Scholar
  37. 37.
    Chien CC, Jeng KT. Effective preparation of carbon nanotubesupported Pt–Ru electrocatalysts. Mater Chem Phys, 2006, 99: 80–87CrossRefGoogle Scholar
  38. 38.
    Zamborini FP, Hicks JF, Murray RW. Quantized double layer charging of nanoparticle films assembled using carboxylate/(Cu2+ or Zn2+)/carboxylate bridges. J Am Chem Soc, 2000, 122: 4514–4515CrossRefGoogle Scholar
  39. 39.
    Schmitt J, Decher G, Dressick WJ, et al. Metal nanoparticle/polymer superlattice films: fabrication and control of layer structure. Adv Mater, 1997, 9: 61–65CrossRefGoogle Scholar
  40. 40.
    Sarathy KV, Thomas PJ, Kulkarni GU, et al. Superlattices of metal and metal-semiconductor quantum dots obtained by layer-bylayer deposition of nanoparticle arrays. J Phys Chem B, 1999, 103: 399–401CrossRefGoogle Scholar
  41. 41.
    Song J, Kam FY, Png RQ, et al. A general method for transferring graphene onto soft surfaces. Nat Nanotech, 2013, 8: 356–362CrossRefGoogle Scholar
  42. 42.
    Zhou YG, Chen JJ, Wang F, et al. A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells. Chem Commun, 2010, 46: 5951–5953CrossRefGoogle Scholar
  43. 43.
    Liang Q, Zhang L, Cai M, et al. Preparation and charaterization of Pt/functionalized graphene and its electrocatalysis for methanol oxidation. Electrochim Acta, 2013, 111: 275–283CrossRefGoogle Scholar
  44. 44.
    Mayavan S, Jang HS, Lee MJ, et al. Enhancing the catalytic activity of Pt nanoparticles using poly sodium styrene sulfonate stabilized graphene supports for methanol oxidation. J Mater Chem A, 2013, 1: 3489–3494CrossRefGoogle Scholar
  45. 45.
    Qiu JD, Wang GC, Liang RP, et al. Controllable deposition of platinum nanoparticles on graphene as an electrocatalyst for direct methanol fuel cells. J Phys Chem C, 2011, 115: 15639–15645CrossRefGoogle Scholar
  46. 46.
    Wang L, Tian C, Wang H, et al. Mass production of graphene via an in situ self-generating template route and its promoted activity as electrocatalytic support for methanol electroxidization. J Phys Chem C, 2010, 114: 8727–8733CrossRefGoogle Scholar
  47. 47.
    Rajesh, Paul RK, Mulchandani A. Platinum nanoflowers decorated three-dimensional graphene–carbon nanotubes hybrid with enhanced electrocatalytic activity. J Power Sources, 2013, 223: 23–29CrossRefGoogle Scholar
  48. 48.
    Zhong JP, Fan YJ, Wang H, et al. Copper phthalocyanine functionalization of graphene nanosheets as support for platinum nanoparticles and their enhanced performance toward methanol oxidation. J Power Sources, 2013, 242: 208–215CrossRefGoogle Scholar
  49. 49.
    Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324: 1312–1314CrossRefGoogle Scholar
  50. 50.
    Mao H, Wang R, Zhong J, et al. Mildly O2 plasma treated CVD graphene as a promising platform for molecular sensing. Carbon, 2014, 76: 212–219CrossRefGoogle Scholar
  51. 51.
    Ferrari AC, Basko DM. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotech, 2013, 8: 235–246CrossRefGoogle Scholar
  52. 52.
    Nourbakhsh A, Cantoro M, Vosch T, et al. Bandgap opening in oxygen plasma-treated graphene. Nanotechnology, 2010, 21: 435203CrossRefGoogle Scholar
  53. 53.
    Xiao N, Dong X, Song L, et al. Enhanced thermopower of graphene films with oxygen plasma treatment. ACS Nano, 2011, 5: 2749–2755CrossRefGoogle Scholar
  54. 54.
    Bragaru A, Vasile E, Obreja C, et al. Pt nanoparticles on graphene–polyelectrolyte nanocomposite: Investigation of H2O2 and methanol electrocatalysis. Mater Chem Phys, 2014, 146: 538–544CrossRefGoogle Scholar
  55. 55.
    Zhao J, Li H, Liu Z, et al. An advanced electrocatalyst with exceptional eletrocatalytic activity via ultrafine Pt-based trimetallic nanoparticles on pristine graphene. Carbon, 2015, 87: 116–127CrossRefGoogle Scholar
  56. 56.
    Rhee CK, Kim BJ, Ham C, et al. Size effect of Pt nanoparticle on catalytic activity in oxidation of methanol and formic acid: comparison to Pt(111), Pt(100), and polycrystalline Pt electrodes. Langmuir, 2009, 25: 7140–7147CrossRefGoogle Scholar
  57. 57.
    Meyer JC, Geim AK, Katsnelson MI, et al. On the roughness of single-and bi-layer graphene membranes. Solid State Commun, 2007, 143: 101–109CrossRefGoogle Scholar
  58. 58.
    Ghosh K, Kumar M, Wang H, et al. Facile decoration of platinum nanoparticles on carbon-nitride nanotubes via microwave-assisted chemical reduction and their optimization for field-emission application. J Phys Chem C, 2010, 114: 5107–5112CrossRefGoogle Scholar
  59. 59.
    Xu X, Zhou Y, Lu J, et al. Single-step synthesis of PtRu/N-doped graphene for methanol electrocatalytic oxidation. Electrochim Acta, 2014, 120: 439–451CrossRefGoogle Scholar
  60. 60.
    Clavilier J, Armand D. Electrochemical induction of changes in the distribution of the hydrogen adsorption states on Pt (100) and Pt (111) surfaces in contact with sulphuric acid solution. J Electroanal Chem Interfacial Electrochem, 1986, 199: 187–200CrossRefGoogle Scholar
  61. 61.
    Herrero E, Franaszczuk K, Wieckowski A. Electrochemistry of methanol at low index crystal planes of platinum: an integrated voltammetric and chronoamperometric study. J Phys Chem, 1994, 98: 5074–5083CrossRefGoogle Scholar
  62. 62.
    Sharma S, Ganguly A, Papakonstantinou P, et al. Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol. J Phys Chem C, 2010, 114: 19459–19466CrossRefGoogle Scholar
  63. 63.
    Tripković AV, Popović KD, Grgur BN, et al. Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkaline solutions. Electrochim Acta, 2002, 47: 3707–3714CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhuchen Tao (陶柱晨)
    • 1
  • Wei Chen (陈微)
    • 2
  • Jing Yang (杨晶)
    • 2
  • Xiangyang Wang (王向阳)
    • 1
  • Ziqi Tan (谈紫琪)
    • 1
  • Jianglin Ye (叶江林)
    • 1
  • Yanxia Chen (陈艳霞)
    • 2
    Email author
  • Yanwu Zhu (朱彦武)
    • 1
    Email author
  1. 1.CAS Key Laboratory of Materials for Energy Conversion; Department of Materials Science and Engineering; i-ChEMUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical PhysicsUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations