Advertisement

Science China Materials

, Volume 62, Issue 5, pp 699–710 | Cite as

One-step electrodeposition fabrication of Ni3S2 nanosheet arrays on Ni foam as an advanced electrode for asymmetric supercapacitors

  • Jiasheng Xu (许家胜)Email author
  • Yudong Sun (孙誉东)
  • Mingjun Lu (鲁明俊)
  • Lin Wang (王琳)
  • Jie Zhang (张杰)
  • Xiaoyang Liu (刘晓旸)Email author
Articles
  • 82 Downloads

Abstract

Ni3S2 nanosheet (NS) arrays on Ni foam were fabricated by a simple one-step electrodeposition strategy, and used as a kind of electrode material for asymmetric supercapacitors. The Ni3S2 NS arrays are interconnected, which can be regarded as bridges between these individual nanoparticle units. The electrochemical performances were evaluated by cyclic voltammetry and chronopotentiometry techniques in a three-electrode system. The Ni3S2 NS arrays display a specific capacitance of 773.6 F g-1 at 1 A g-1, and excellent rate property of 84.3% at 10 A g-1. The performance of the Ni3S2 NS arrays was further investigated in an asymmetric supercapacitor for potential practical application. The asymmetric supercapacitor using the Ni3S2 electrode and reduced graphene oxide electrode as positive and negative electrodes, respectively, exhibits an energy density of 41.2 W h kg-1 at 1.6 kW kg-1. When up to 16 kW kg-1, it holds 25.3 W h kg-1. These excellent electrochemical performances are attributed to the improved electronic conductivity and rich redox reaction sites from Ni3S2 NS arrays. Our results indicate that the Ni3S2 NS arrays have great potential for supercapacitors.

Keywords

nickel subsulfide electrodeposition nanosheet arrays asymmetric supercapacitors 

一步电沉积法制备Ni3S2纳米片阵列作为高性能非对称超级电容器的研究

摘要

本文采用一步电沉积法制备了Ni3S2纳米片阵列超级电容器电极. Ni3S2纳米片彼此互连能够为电子传导提供快速通道, 有利于电子 与离子传输, 提供了丰富的赝电容反应位点. 采用不同电沉积次数探究了不同负载量的Ni3S2对其电化学性能的影响. 性能最好的Ni3S2电 极在1 A g-1下展示出773.6 F g-1的单位比电容, 在10 A g-1时具有84.3%的优异倍率性能. 组装的非对称超级电容器(Ni3S2//rGO)表现出优 良的使用性能. 这些结果表明了所制备的Ni3S2超级电容器电极材料具有广阔的应用前景. 电沉积法控制Ni3S2负载量的策略能够为电极材 料制备提供一种新思路.

Notes

Acknowledgements

The authors acknowledge the financial support from the National Key R&D Program of China (2018YFF0215200), the Natural Science Foundation of Liaoning Province (201602104), the Support Program for Innovative Talents in Liaoning University (LR2017061), the Basic Research Project of Liaoning Province (LF2017007), and the Scientific Public Welfare Research Foundation of Liaoning Province (20170054).

Supplementary material

40843_2018_9361_MOESM1_ESM.pdf (1.3 mb)
One-step electrodeposition fabrication of the Ni3S2 nanosheet arrays on Ni foam as an advanced electrode for asymmetric supercapacitors

References

  1. 1.
    Zheng M, Xiao X, Li L, et al. Hierarchically nanostructured transition metal oxides for supercapacitors. Sci China Mater, 2018, 61: 185–209CrossRefGoogle Scholar
  2. 2.
    Zhang X, Zhang H, Lin Z, et al. Recent advances and challenges of stretchable supercapacitors based on carbon materials. Sci China Mater, 2016, 59: 475–494CrossRefGoogle Scholar
  3. 3.
    Zuo W, Li R, Zhou C, et al. Battery-supercapacitor hybrid devices: Recent progress and future prospects. Adv Sci, 2017, 4: 1600539CrossRefGoogle Scholar
  4. 4.
    Li Y, Liu C, Xie Z, et al. Superior sodium storage performance of additive-free V2O5 thin film electrodes. J Mater Chem A, 2017, 5: 16590–16594CrossRefGoogle Scholar
  5. 5.
    Zheng X, Ye Y, Yang Q, et al. Hierarchical structures composed of MnCo2O4@MnO2 core-shell nanowire arrays with enhanced supercapacitor properties. Dalton Trans, 2016, 45: 572–578CrossRefGoogle Scholar
  6. 6.
    Zhu W, Li R, Xu P, et al. Vanadium trioxide@carbon nanosheet array-based ultrathin flexible symmetric hydrogel supercapacitors with 2 V voltage and high volumetric energy density. J Mater Chem A, 2017, 5: 22216–22223CrossRefGoogle Scholar
  7. 7.
    Gu Z, Zhang X. NiCo2O4@MnMoO4 core-shell flowers for high performance supercapacitors. J Mater Chem A, 2016, 4: 8249–8254CrossRefGoogle Scholar
  8. 8.
    Hu Q, Gu Z, Zheng X, et al. Three-dimensional Co3O4@NiO hierarchical nanowire arrays for solid-state symmetric supercapacitor with enhanced electrochemical performances. Chem Eng J, 2016, 304: 223–231CrossRefGoogle Scholar
  9. 9.
    Yin Z, Bu Y, Ren J, et al. Triggering superior sodium ion adsorption on (200) facet of mesoporous WO3 nanosheet arrays for enhanced supercapacitance. Chem Eng J, 2018, 345: 165–173CrossRefGoogle Scholar
  10. 10.
    Sun J, Lv C, Lv F, et al. Tuning the shell number of multishelled metal oxide hollow fibers for optimized lithium-ion storage. ACS Nano, 2017, 11: 6186–6193CrossRefGoogle Scholar
  11. 11.
    Wei W, Mi L, Gao Y, et al. Partial ion-exchange of nickel-sulfidederived electrodes for high performance supercapacitors. Chem Mater, 2014, 26: 3418–3426CrossRefGoogle Scholar
  12. 12.
    Li Y, Zhang H, Wang S, et al. Facile low-temperature synthesis of hematite quantum dots anchored on a three-dimensional ultraporous graphene-like framework as advanced anode materials for asymmetric supercapacitors. J Mater Chem A, 2016, 4: 11247–11255CrossRefGoogle Scholar
  13. 13.
    Xu J, Sun Y, Lu M, et al. Fabrication of the porous MnCo2O4 nanorod arrays on Ni foam as an advanced electrode for asymmetric supercapacitors. Acta Mater, 2018, 152: 162–174CrossRefGoogle Scholar
  14. 14.
    Jia R, Li L, Ai Y, et al. Self-healable wire-shaped supercapacitors with two twisted NiCo2O4 coated polyvinyl alcohol hydrogel fibers. Sci China Mater, 2018, 61: 254–262CrossRefGoogle Scholar
  15. 15.
    Li R, Wang Y, Zhou C, et al. Carbon-stabilized high-capacity ferroferric oxide nanorod array for flexible solid-state alkaline battery-supercapacitor hybrid device with high environmental suitability. Adv Funct Mater, 2015, 25: 5384–5394CrossRefGoogle Scholar
  16. 16.
    Ke X, Zhang Z, Cheng Y, et al. Ni(OH)2 nanoflakes supported on 3D hierarchically nanoporous gold/Ni foam as superior electrodes for supercapacitors. Sci China Mater, 2018, 61: 353–362CrossRefGoogle Scholar
  17. 17.
    Li S, Yu C, Yang J, et al. A superhydrophilic “nanoglue” for stabilizing metal hydroxides onto carbon materials for high-energy and ultralong-life asymmetric supercapacitors. Energy Environ Sci, 2017, 10: 1958–1965CrossRefGoogle Scholar
  18. 18.
    Li N, Huang X, Li R, et al. Pseudocapacitive transparent/flexible supercapacitor based on graphene wrapped Ni(OH)2 nanosheet transparent film produced using scalable bio-inspired methods. Electrochim Acta, 2016, 219: 61–69CrossRefGoogle Scholar
  19. 19.
    Hu Q, Ma W, Liang G, et al. Anion-exchange reaction synthesized CoNi2S4 nanowires for superior electrochemical performances. RSC Adv, 2015, 5: 84974–84979CrossRefGoogle Scholar
  20. 20.
    Wang K, Zhang X, Sun X, et al. Conducting polymer hydrogel materials for high-performance flexible solid-state supercapacitors. Sci China Mater, 2016, 59: 412–420CrossRefGoogle Scholar
  21. 21.
    Li K, Zhang J. Recent advances in flexible supercapacitors based on carbon nanotubes and graphene. Sci China Mater, 2018, 61: 210–232CrossRefGoogle Scholar
  22. 22.
    Lu Y, Li L, Chen D, et al. Nanowire-assembled Co3O4@NiCo2O4 architectures for high performance all-solid-state asymmetric supercapacitors. J Mater Chem A, 2017, 5: 24981–24988CrossRefGoogle Scholar
  23. 23.
    Wang J, Chao D, Liu J, et al. Ni3S2@MoS2 core/shell nanorod arrays on Ni foam for high-performance electrochemical energy storage. Nano Energy, 2014, 7: 151–160CrossRefGoogle Scholar
  24. 24.
    Bao F, Wang X, Zhao X, et al. Controlled growth of mesoporous ZnCo2O4 nanosheet arrays on Ni foam as high-rate electrodes for supercapacitors. RSC Adv, 2014, 4: 2393–2397CrossRefGoogle Scholar
  25. 25.
    Zhang Z, Zhang H, Zhang X, et al. Facile synthesis of hierarchical CoMoO4@NiMoO4 core-shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors. J Mater Chem A, 2016, 4: 18578–18584CrossRefGoogle Scholar
  26. 26.
    Xu L, Zhao Y, Lian J, et al. Morphology controlled preparation of ZnCo2O4 nanostructures for asymmetric supercapacitor with ultrahigh energy density. Energy, 2017, 123: 296–304CrossRefGoogle Scholar
  27. 27.
    Li M, Yang W, Huang Y, et al. Hierarchical mesoporous Co3O4@ZnCo2O4 hybrid nanowire arrays supported on Ni foam for highperformance asymmetric supercapacitors. Sci China Mater, 2018, 61: 1167–1176CrossRefGoogle Scholar
  28. 28.
    Lin J, Jia H, Liang H, et al. In situ synthesis of vertical standing nanosized NiO encapsulated in graphene as electrodes for highperformance supercapacitors. Adv Sci, 2018, 5: 1700687CrossRefGoogle Scholar
  29. 29.
    Lin J, Jia H, Cai Y, et al. Modifying the electrochemical performance of vertically-oriented few-layered graphene through rotary plasma processing. J Mater Chem A, 2018, 6: 908–917CrossRefGoogle Scholar
  30. 30.
    Li S, Li X, Li Y, et al. Design of V2O5·xH2O cathode for highly enhancing sodium storage. J Alloys Compd, 2017, 722: 278–286CrossRefGoogle Scholar
  31. 31.
    Li X, Li W, Yu J, et al. Self-supported Zn3P2 nanowires-assembly bundles grafted on Ti foil as an advanced integrated electrodes for lithium/sodium ion batteries with high performances. J Alloys Compd, 2017, 724: 932–939CrossRefGoogle Scholar
  32. 32.
    Xu J, Sun Y, Lu M, et al. Fabrication of porous Mn2O3 microsheet arrays on nickel foam as high-rate electrodes for supercapacitors. J Alloys Compd, 2017, 717: 108–115CrossRefGoogle Scholar
  33. 33.
    Xu J, Wang L, Zhang J, et al. Fabrication of porous double-urchinlike MgCo2O4 hierarchical architectures for high-rate supercapacitors. J Alloys Compd, 2016, 688: 933–938CrossRefGoogle Scholar
  34. 34.
    Chen W, Xia C, Alshareef HN. One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors. ACS Nano, 2014, 8: 9531–9541CrossRefGoogle Scholar
  35. 35.
    Yao K, Zhao C, Sun N, et al. Freestanding CuS nanowalls: ionic liquid-assisted synthesis and prominent catalytic performance for the decomposition of ammonium perchlorate. CrystEngComm, 2017, 19: 5048–5057CrossRefGoogle Scholar
  36. 36.
    Wu H, Lou Z, Yang H, et al. A flexible spiral-type supercapacitor based on ZnCo2O4 nanorod electrodes. Nanoscale, 2015, 7: 1921–1926CrossRefGoogle Scholar
  37. 37.
    Wang R, Luo Y, Chen Z, et al. The effect of loading density of nickel-cobalt sulfide arrays on their cyclic stability and rate performance for supercapacitors. Sci China Mater, 2016, 59: 629–638CrossRefGoogle Scholar
  38. 38.
    Huang X, Zhang Z, Li H, et al. Novel fabrication of Ni3S2/MnS composite as high performance supercapacitor electrode. J Alloys Compd, 2017, 722: 662–668CrossRefGoogle Scholar
  39. 39.
    He T, Wang S, Lu F, et al. Controllable synthesis of hierarchical NiCo2 S4@Ni3 S2 core-shell nanotube arrays with excellent electrochemical performance for aqueous asymmetric supercapacitors. RSC Adv, 2016, 6: 97352–97362CrossRefGoogle Scholar
  40. 40.
    He Y, Xiao X, Gao L, et al. Bouquet-like NiCo2O4@CoNi2S4 arrays for high-performance pseudocapacitors. ChemElectroChem, 2017, 4: 607–612CrossRefGoogle Scholar
  41. 41.
    He W, Wang C, Zhuge F, et al. Flexible and high energy density asymmetrical supercapacitors based on core/shell conducting polymer nanowires/manganese dioxide nanoflakes. Nano Energy, 2017, 35: 242–250CrossRefGoogle Scholar
  42. 42.
    Lu Z, Wu X, Jiang M, et al. Transition metal oxides/hydroxides nanoarrays for aqueous electrochemical energy storage systems. Sci China Mater, 2014, 57: 59–69CrossRefGoogle Scholar
  43. 43.
    Wang C, Guo K, He W, et al. Hierarchical CuCo2O4@nickel-cobalt hydroxides core/shell nanoarchitectures for high-performance hybrid supercapacitors. Sci Bull, 2017, 62: 1122–1131CrossRefGoogle Scholar
  44. 44.
    Shen L, Yu L, Wu HB, et al. Formation of nickel cobalt sulfide ballin- ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat Commun, 2015, 6: 6694CrossRefGoogle Scholar
  45. 45.
    He W, Wang C, Li H, et al. Ultrathin and Porous Ni3S2/CoNi2S4 3D-Network Structure for Superhigh Energy Density Asymmetric Supercapacitors. Adv Energy Mater, 2017, 7: 1700983CrossRefGoogle Scholar
  46. 46.
    Yang X, Zhao L, Lian J. Arrays of hierarchical nickel sulfides/MoS2 nanosheets supported on carbon nanotubes backbone as advanced anode materials for asymmetric supercapacitor. J Power Sources, 2017, 343: 373–382CrossRefGoogle Scholar
  47. 47.
    Huang Y, Shi T, Jiang S, et al. Enhanced cycling stability of NiCo2S4@NiO core-shell nanowire arrays for all-solid-state asymmetric supercapacitors. Sci Rep, 2016, 6: 38620CrossRefGoogle Scholar
  48. 48.
    Kamali-Heidari E, Xu ZL, Sohi MH, et al. Core-shell structured Ni3S2 nanorods grown on interconnected Ni-graphene foam for symmetric supercapacitors. Electrochim Acta, 2018, 271: 507–518CrossRefGoogle Scholar
  49. 49.
    Chen JS, Guan C, Gui Y, et al. Rational design of self-supported Ni3S2 nanosheets array for advanced asymmetric supercapacitor with a superior energy density. ACS Appl Mater Interfaces, 2017, 9: 496–504CrossRefGoogle Scholar
  50. 50.
    Yang B, Yu L, Liu Q, et al. The growth and assembly of the multidimensional hierarchical Ni3S2 for aqueous asymmetric supercapacitors. CrystEngComm, 2015, 17: 4495–4501CrossRefGoogle Scholar
  51. 51.
    Huo H, Zhao Y, Xu C. 3D Ni3S2 nanosheet arrays supported on Ni foam for high-performance supercapacitor and non-enzymatic glucose detection. J Mater Chem A, 2014, 2: 15111–15117CrossRefGoogle Scholar
  52. 52.
    Jiang Y, Zhou C, Liu J. A non-polarity flexible asymmetric supercapacitor with nickel nanoparticle@carbon nanotube three-dimensional network electrodes. Energy Storage Mater, 2018, 11: 75–82CrossRefGoogle Scholar
  53. 53.
    Khani H, Wipf DO. Iron oxide nanosheets and pulse-electrodeposited Ni-Co-S nanoflake arrays for high-performance charge storage. ACS Appl Mater Interfaces, 2017, 9: 6967–6978CrossRefGoogle Scholar
  54. 54.
    Chou SW, Lin JY. Pulse-reversal deposition of nickel sulfide thin film as an efficient cathode material for hybrid supercapacitors. J Electrochem Soc, 2015, 162: A2762–A2769CrossRefGoogle Scholar
  55. 55.
    Zhang Z, Zhang X, Feng Y, et al. Fabrication of porous ZnCo2O4 nanoribbon arrays on nickel foam for high-performance supercapacitors and lithium-ion batteries. Electrochim Acta, 2018, 260: 823–829CrossRefGoogle Scholar
  56. 56.
    Chen H, Jiang J, Zhao Y, et al. One-pot synthesis of porous nickel cobalt sulphides: tuning the composition for superior pseudocapacitance. J Mater Chem A, 2015, 3: 428–437CrossRefGoogle Scholar
  57. 57.
    Zhao J, Guan B, Hu B, et al. Vulcanizing time controlled synthesis of NiS microflowers and its application in asymmetric supercapacitors. Electrochim Acta, 2017, 230: 428–437CrossRefGoogle Scholar
  58. 58.
    Wang YL, Wei XQ, Li MB, et al. Temperature dependence of Ni3S2 nanostructures with high electrochemical performance. Appl Surf Sci, 2018, 436: 42–49CrossRefGoogle Scholar
  59. 59.
    Liu X, Li Y, Chen N, et al. Ni3S2@Ni foam 3D electrode prepared via chemical corrosion by sodium sulfide and using in hydrazine electro-oxidation. Electrochim Acta, 2016, 213: 730–739CrossRefGoogle Scholar
  60. 60.
    Chang Y, Sui Y, Qi J, et al. Facile synthesis of Ni3S2 and Co9S8 double-size nanoparticles decorated on rGO for high-performance supercapacitor electrode materials. Electrochim Acta, 2017, 226: 69–78CrossRefGoogle Scholar
  61. 61.
    Li R, Wang S, Wang J, et al. Ni3 S2@CoS core-shell nano-triangular pyramid arrays on Ni foam for high-performance supercapacitors. Phys Chem Chem Phys, 2015, 17: 16434–16442CrossRefGoogle Scholar
  62. 62.
    Hu W, Chen R, Xie W, et al. CoNi2S4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications. ACS Appl Mater Interfaces, 2014, 6: 19318–19326CrossRefGoogle Scholar
  63. 63.
    Xu J, Sun Y, Lu M, et al. Fabrication of hierarchical MnMoO4·H2O@MnO2 core-shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors. Chem Eng J, 2018, 334: 1466–1476CrossRefGoogle Scholar
  64. 64.
    Han T, Jiang L, Jiu H, et al. Hydrothermal synthesis of the clustered network-like Ni3S2-Co9S8 with enhanced electrochemical behavior for supercapacitor electrode. J Phys Chem Solids, 2017, 110: 1–8CrossRefGoogle Scholar
  65. 65.
    Yan Z, Guo C, Yang F, et al. Cliff-like NiO/Ni3S2 directly grown on ni foam for battery-type electrode with high area capacity and long cycle stability. Electrochim Acta, 2017, 251: 235–243CrossRefGoogle Scholar
  66. 66.
    Li J, Wang S, Xiao T, et al. Controllable preparation of nanoporous Ni3S2 films by sulfuration of nickel foam as promising asymmetric supercapacitor electrodes. Appl Surf Sci, 2017, 420: 919–926CrossRefGoogle Scholar
  67. 67.
    Dai CS, Chien PY, Lin JY, et al. Hierarchically structured Ni3S2/carbon nanotube composites as high performance cathode materials for asymmetric supercapacitors. ACS Appl Mater Interfaces, 2013, 5: 12168–12174CrossRefGoogle Scholar
  68. 68.
    Yu W, Lin W, Shao X, et al. High performance supercapacitor based on Ni3S2/carbon nanofibers and carbon nanofibers electrodes derived from bacterial cellulose. J Power Sources, 2014, 272: 137–143CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jiasheng Xu (许家胜)
    • 1
    Email author
  • Yudong Sun (孙誉东)
    • 1
  • Mingjun Lu (鲁明俊)
    • 1
  • Lin Wang (王琳)
    • 1
  • Jie Zhang (张杰)
    • 1
  • Xiaoyang Liu (刘晓旸)
    • 2
    Email author
  1. 1.Liaoning Province Key Laboratory for Synthesis and Application of Functional Compounds, College of Chemistry and Chemical Engineering, Center of Experiment ManagementBohai UniversityJinzhouChina
  2. 2.State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of ChemistryJilin UniversityChangchunChina

Personalised recommendations