Advertisement

An in-situ room temperature route to CuBiI4 based bulk-heterojunction perovskite-like solar cells

  • Busheng Zhang (张卜生)
  • Yan Lei (雷岩)
  • Ruijuan Qi (齐瑞娟)
  • Haili Yu (余海丽)
  • Xiaogang Yang (杨晓刚)
  • Tuo Cai (蔡拓)
  • Zhi Zheng (郑直)
Articles

Abstract

Both bismuth and copper are non-toxic and earth-abundant elements suitable for lead-free halide perovskite-like photovoltaic devices. Here, we report a highly facile route for in-situ producing copper-bismuth-iodide (CuBiI4) thin films directly on ITO substrate at room temperature, by utilizing a Bi-Cu alloy layer as precursor. X-ray diffraction and transmission electron microscopy (TEM) results verified the formation of well crystallized CuBiI4 thin films with [222] orientation. The transient photovoltage (TPV) analysis revealed that the CuBiI4 is an n-type semiconductor with a suitable band gap of ~1.81 eV, preferable to photoelectric conversion compared with CH3NH3PbI3. It is very interesting that the subsequent spin-coating process of the classical Spiro-MeOTAD organic solution with TBP and acetonitrile resulted in a dense and smooth CuBiI4:Spiro-MeOTAD bulk-heterojunction film. The preliminarily fabricated simple sandwich structures of ITO/CuBiI4:Spiro-MeOTAD/ Au hybrid solar cell devices displayed efficient photovoltaic performance with the PCE up to 1.119% of the best sample. The room temperature direct metal surface elemental reaction (DMSER) method may provide a new insight for all-inorganic lead free perovskite-like AaBbXx compounds and high performance photovoltaic devices.

Keywords

copper-bismuth-iodide CuBiI4 room temperature lead-free perovskite-like bulk-heterojunction solar cells 

室温原位法制备CuBiI4材料及其在体相异质结太阳能电池中的应用

摘要

铋和铜作为无毒且储量相对丰富的金属元素, 都非常适合新型无铅卤化物钙钛矿材料及相应光伏器件的设计和制备.本文采用非常简单的气-固反应方法, 以铋铜合金作为前驱体直接在ITO基底上室温原位制备了一种新型铜铋碘(CuBiI4)化合物薄膜材料. XRD和TEM的测试结果证实了这种具有(222)优势晶面取向CuBiI4晶体薄膜的生成. 瞬态表面光电压(TPV)测试表明我们制备的CuBiI4是一种n型半导体材料, 且具有与CH3NH3PbI3钙钛矿材料相当的光生载流子分离与传输性能. UV-Vis, PL和IPCE等结果表明灰黑色CuBiI4的禁带宽度大约为1.81 eV, 适合作为光伏材料. 值得注意的是, 我们利用四叔丁基吡啶(TBP)、乙腈和Spiro-MeOTAD有机混和溶剂旋涂处理后, 得到了一种混合均匀、致密、平滑的CuBiI4:Spiro-MeOTAD本体异质结薄膜. 基于这种新型薄膜, 我们制备了具有简单三明治结构的ITO/Cu-BiI4:Spiro-MeOTAD/Au杂化太阳能电池器件, 并获得了1.119%的光电转化效率. 这种室温下金属表面元素直接反应的方法(DMSER)为未来无铅钙钛矿或类钙钛矿化合物(AaBbXx)的制备及其在高性能光伏器件中的应用提供了一个全新的策略.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21673200, 61504117 and U1604121), the Innovation Scientists and Technicians Troop Construction Projects of Henan Province (144200510014).

Supplementary material

40843_2018_9355_MOESM1_ESM.pdf (1.5 mb)
Supplementary material, approximately 1566 KB.

References

  1. 1.
    Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131: 6050–6051CrossRefGoogle Scholar
  2. 2.
    Molina-Ontoria A, Zimmermann I, Garcia-Benito I, et al. Benzotrithiophene-based hole-transporting materials for 18. 2% perovskite solar cells. Angew Chem Int Ed, 2016, 55: 6270–6274CrossRefGoogle Scholar
  3. 3.
    Burschka J, Pellet N, Moon SJ, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499: 316–319CrossRefGoogle Scholar
  4. 4.
    Chen H, Ye F, Tang W, et al. A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature, 2017, 131: 92–95Google Scholar
  5. 5.
    Zhou H, Chen Q, Li G, et al. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345: 542–546CrossRefGoogle Scholar
  6. 6.
    Yang WS, Park BW, Jung EH, et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science, 2017, 356: 1376–1379CrossRefGoogle Scholar
  7. 7.
    Zhang C, Gao L, Hayase S, et al. Current advancements in material research and techniques focusing on lead-free perovskite solar cells. Chem Lett, 2017, 46: 1276–1284CrossRefGoogle Scholar
  8. 8.
    Shi Z, Guo J, Chen Y, et al. Lead-free organic-inorganic hybrid perovskites for photovoltaic applications: recent advances and perspectives. Adv Mater, 2017, 29: 1605005CrossRefGoogle Scholar
  9. 9.
    Hoefler SF, Trimmel G, Rath T. Progress on lead-free metal halide perovskites for photovoltaic applications: a review. Monatsh Chem, 2017, 148: 795–826CrossRefGoogle Scholar
  10. 10.
    Hao F, Stoumpos CC, Cao DH, et al. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat Photonics, 2014, 8: 489–494CrossRefGoogle Scholar
  11. 11.
    Xi J, Wu Z, Jiao B, et al. Multichannel interdiffusion driven FASnI3 film formation using aqueous hybrid salt/polymer solutions toward flexible lead-free perovskite solar cells. Adv Mater, 2017, 29: 1606964CrossRefGoogle Scholar
  12. 12.
    Noel NK, Stranks SD, Abate A, et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ Sci, 2014, 7: 3061–3068CrossRefGoogle Scholar
  13. 13.
    Zhu Z, Chueh CC, Li N, et al. Realizing efficient lead-free formamidinium tin triiodide perovskite solar cells via a sequential deposition route. Adv Mater, 2018, 30: 1703800CrossRefGoogle Scholar
  14. 14.
    Cheng P, Wu T, Zhang J, et al. (C6H5C2H4NH3)2GeI4: A layered two-dimensional perovskite with potential for photovoltaic applications. J Phys Chem Lett, 2017, 8: 4402–4406CrossRefGoogle Scholar
  15. 15.
    Stoumpos CC, Frazer L, Clark DJ, et al. Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. J Am Chem Soc, 2015, 137: 6804–6819CrossRefGoogle Scholar
  16. 16.
    Konstantakou M, Stergiopoulos T. A critical review on tin halide perovskite solar cells. J Mater Chem A, 2017, 5: 11518–11549CrossRefGoogle Scholar
  17. 17.
    Zhang X, Wu G, Gu Z, et al. Active-layer evolution and efficiency improvement of (CH3NH3)3Bi2I9-based solar cell on TiO2- deposited ITO substrate. Nano Res, 2016, 9: 2921–2930CrossRefGoogle Scholar
  18. 18.
    Ma Z, Peng S, Wu Y, et al. Air-stable layered bismuth-based perovskite-like materials: Structures and semiconductor properties. Physica B-Condensed Matter, 2017, 526: 136–142CrossRefGoogle Scholar
  19. 19.
    Chen X, Myung Y, Thind A, et al. Atmospheric pressure chemical vapor deposition of methylammonium bismuth iodide thin films. J Mater Chem A, 2017, 5: 24728–24739CrossRefGoogle Scholar
  20. 20.
    Vigneshwaran M, Ohta T, Iikubo S, et al. Facile synthesis and characterization of sulfur doped low bandgap bismuth based perovskites by soluble precursor route. Chem Mater, 2016, 28: 6436–6440CrossRefGoogle Scholar
  21. 21.
    Singh T, Kulkarni A, Ikegami M, et al. Effect of electron transporting layer on bismuth-based lead-free perovskite (CH3NH3)3 Bi2I9 for photovoltaic applications. ACS Appl Mater Interfaces, 2016, 8: 14542–14547CrossRefGoogle Scholar
  22. 22.
    Zhang Z, Li X, Xia X, et al. High-quality (CH3NH3)3Bi2I9 filmbased solar cells: pushing efficiency up to 1. 64%. J Phys Chem Lett, 2017, 8: 4300–4307CrossRefGoogle Scholar
  23. 23.
    Lehner AJ, Fabini DH, Evans HA, et al. Crystal and electronic structures of complex bismuth iodides A3Bi2I9 (A=K, Rb, Cs) related to perovskite: aiding the rational design of photovoltaics. Chem Mater, 2015, 27: 7137–7148CrossRefGoogle Scholar
  24. 24.
    Park BW, Philippe B, Zhang X, et al. Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application. Adv Mater, 2016, 27: 6806–6813CrossRefGoogle Scholar
  25. 25.
    Johansson MB, Zhu H, Johansson EMJ. Extended photo-conversion spectrum in low-toxic bismuth halide perovskite solar cells. J Phys Chem Lett, 2016, 7: 3467–3471CrossRefGoogle Scholar
  26. 26.
    Bai F, Hu Y, Hu Y, et al. Lead-free, air-stable ultrathin Cs3Bi2I9 perovskite nanosheets for solar cells. Sol Energy Mater Sol Cells, 2018, 184: 15–21CrossRefGoogle Scholar
  27. 27.
    Pazoki M, Johansson MB, Zhu H, et al. Bismuth iodide perovskite materials for solar cell applications: Electronic structure, optical transitions, and directional charge transport. J Phys Chem C, 2016, 120: 29039–29046CrossRefGoogle Scholar
  28. 28.
    Greul E, Petrus ML, Binek A, et al. Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications. J Mater Chem A, 2017, 5: 19972–19981CrossRefGoogle Scholar
  29. 29.
    Yang B, Chen J, Yang S, et al. Lead-free silver-bismuth halide double perovskite nanocrystals. Angew Chem Int Ed, 2018, 57: 5359–5363CrossRefGoogle Scholar
  30. 30.
    McClure ET, Ball MR, Windl W, et al. Cs2AgBiX6 (X = Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors. Chem Mater, 2016, 28: 1348–1354CrossRefGoogle Scholar
  31. 31.
    Savory CN, Walsh A, Scanlon DO. Can Pb-free halide double perovskites support high-efficiency solar cells? ACS Energy Lett, 2016, 1: 949–955CrossRefGoogle Scholar
  32. 32.
    Turkevych I, Kazaoui S, Ito E, et al. Photovoltaic rudorffites: Leadfree silver bismuth halides alternative to hybrid lead halide perovskites. ChemSusChem, 2017, 10: 3754–3759CrossRefGoogle Scholar
  33. 33.
    Jung KW, Sohn MR, Lee HM, et al. Silver bismuth iodides in various compositions as potential Pb-free light absorbers for hybrid solar cells. Sustain Energy Fuels, 2018, 2: 294–302CrossRefGoogle Scholar
  34. 34.
    Kim Y, Yang Z, Jain A, et al. Pure cubic-phase hybrid iodobismuthates AgBi2I7 for thin-film photovoltaics. Angew Chem Int Ed, 2016, 55: 9586–9590CrossRefGoogle Scholar
  35. 35.
    Fourcroy HP, Carré D, Thévet F, et al. Structure du tétraiodure de cuivre(I) et de bismuth(III), CuBiI4. Acta Crystallogr C, 1991, 47: 2023-2025CrossRefGoogle Scholar
  36. 36.
    Hu Z, Wang Z, Kapil G, et al. Solution-processed air-stable copper bismuth iodide for photovoltaics. ChemSusChem, 2018, 11: 2930–2935CrossRefGoogle Scholar
  37. 37.
    Zhang L, Lei Y, Yang X, et al. A facile room temperature iodination route to in situ fabrication of patterned copper-iodide/silicon quasi-bulk-heterojunction thin films for photovoltaic application. Dalton Trans, 2015, 44: 5848–5853CrossRefGoogle Scholar
  38. 38.
    Lei Y, Yang X, Gu L, et al. Room-temperature preparation of trisilver-copper-sulfide/polymer based heterojunction thin film for solar cell application. J Power Sources, 2015, 280: 313–319CrossRefGoogle Scholar
  39. 39.
    Lei Y, Jia H, He W, et al. Hybrid solar cells with outstanding shortcircuit currents based on a room temperature soft-chemical strategy: the case of P3HT:Ag2S. J Am Chem Soc, 2012, 134: 17392–17395CrossRefGoogle Scholar
  40. 40.
    He Y, Lei Y, Yang X, et al. Using elemental Pb surface as a precursor to fabricate large area CH3NH3PbI3 perovskite solar cells. Appl Surf Sci, 2016, 389: 540–546CrossRefGoogle Scholar
  41. 41.
    Lei Y, Gu L, Yang X, et al. Fast chemical vapor-solid reaction for synthesizing organometal halide perovskite array thin films for photodetector applications. J Alloys Compd, 2018, 766: 933–940CrossRefGoogle Scholar
  42. 42.
    https://materials. springer. com/isp/crystallographic/docs/ sd_1123303Google Scholar
  43. 43.
    Lei Y, Gu L, He W, et al. Intrinsic charge carrier dynamics and device stability of perovskite/ZnO mesostructured solar cells in moisture. J Mater Chem A, 2016, 4: 5474–5481CrossRefGoogle Scholar
  44. 44.
    Yang X, Liu R, Lei Y, et al. Dual influence of reduction annealing on diffused hematite/FTO junction for enhanced photoelectrochemical water oxidation. ACS Appl Mater Interfaces, 2016, 8: 16476–16485CrossRefGoogle Scholar
  45. 45.
    Jing L, Zhou W, Tian G, et al. Surface tuning for oxide-based nanomaterials as efficient photocatalysts. Chem Soc Rev, 2013, 42: 9509–9549CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Busheng Zhang (张卜生)
    • 1
    • 2
  • Yan Lei (雷岩)
    • 1
  • Ruijuan Qi (齐瑞娟)
    • 3
  • Haili Yu (余海丽)
    • 1
  • Xiaogang Yang (杨晓刚)
    • 1
  • Tuo Cai (蔡拓)
    • 1
  • Zhi Zheng (郑直)
    • 1
  1. 1.Key Laboratory for Micro-Nano Energy Storage and Conversion Materials of Henan Province, College of Advanced Materials and Energy, Institute of Surface Micro and Nano MaterialsXuchang UniversityXuchangChina
  2. 2.School of Civil Engineering and CommunicationNorth China University of Water Resources and Electric PowerZhengzhouChina
  3. 3.Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic EngineeringEast China Normal UniversityShanghaiChina

Personalised recommendations