Advertisement

Science China Materials

, Volume 62, Issue 5, pp 711–718 | Cite as

Highly efficient solar steam generation of low cost TiN/bio-carbon foam

  • Dongfang Guo (郭东方)
  • Xiuchun Yang (杨修春)Email author
Articles
  • 124 Downloads

Abstract

The use of solar energy to produce steam is an effective method to purify sewage or seawater. Herein, we deposited TiN nanoparticles (NPs) on a piece of carbonized wood as a new type of double layer material for solar water evaporation. TiN NPs possess better stability, lower cost, lower toxicity and wider and stronger optical absorption than the previously reported photo-thermal conversion (PTC) materials, such as plasmonic metals, carbon-based materials and semiconductor nanomaterials. The amounts of TiN NPs and the thicknesses and types of the substrates have important influences on water evaporation rates and solar-vapor conversion efficiency. A solar-vapor conversion efficiency of 92.5%, the highest efficiency in the reported wood-based PTC materials, is obtained under 1-sun simulated solar irradiation. In addition, the TBCF hybrid materials (TiN NPs on biocarbon foam) exhibit good reusability.

Keywords

TiN nanoparticles bio-carbon foam double layer structure photo-thermal conversion solar-vapor conversion efficiency 

基于低成本TiN/生物碳泡沫的高效太阳能蒸汽发生器

摘要

利用太阳能产生蒸汽是净化污水或海水的有效方法. 本文中, 我们将氮化钛纳米颗粒沉积在经过碳化处理的木块上, 得到一种新型 的双层太阳能蒸汽发生材料. TiN纳米颗粒具有比以往报道过的光热转换材料(如等离子体金属、碳基材料和半导体纳米材料)更好的稳 定性、更经济的价格、更低的毒性、更宽和更强的光吸收等多重优点. TiN纳米颗粒的沉积量以及基底的厚度和类型对水的蒸发速率和 太阳能-蒸汽转换效率有重要影响. 在模拟太阳光强度为1 kW m−2下, 该材料具有92.5%的太阳能-蒸汽转换效率, 这是已知的木基光热转 换材料中的最高效率. 此外, 该材料具有良好的可重复利用性.

Supplementary material

40843_2018_9353_MOESM1_ESM.pdf (217 kb)
Highly efficient solar steam generation of low cost TiN/bio-carbon foam

References

  1. 1.
    Yang X, Liu W, Ren P. All solid-state solar cells based on CH3 NH3PbI3-sensitized TiO2 nanotube arrays. Phys E-Low-dimensional Syst Nanostruct, 2016, 83: 322–328CrossRefGoogle Scholar
  2. 2.
    Pan S, Liu X, Guo M, et al. Engineering the intermediate band states in amorphous Ti3+-doped TiO2 for hybrid dye-sensitized solar cell applications. J Mater Chem A, 2015, 3: 11437–11443CrossRefGoogle Scholar
  3. 3.
    Guo K, Li M, Fang X, et al. Enhancement of properties of dyesensitized solar cells by surface plasmon resonance of Ag nanowire core–shell structure in TiO2 films. J Mater Chem A, 2013, 1: 7229–7234CrossRefGoogle Scholar
  4. 4.
    Liu P, Zhao Y, Qin R, et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science, 2016, 352: 797–800CrossRefGoogle Scholar
  5. 5.
    Rtimi S, Baghriche O, Sanjines R, et al. Photocatalysis/catalysis by innovative TiN and TiN-Ag surfaces inactivate bacteria under visible light. Appl Catal B-Environ, 2012, 123–124: 306–315Google Scholar
  6. 6.
    Yang CC, Yu YH, van der Linden B, et al. Artificial photosynthesis over crystalline TiO2-based catalysts: fact or fiction? J Am Chem Soc, 2010, 132: 8398–8406CrossRefGoogle Scholar
  7. 7.
    Siva Reddy V, Kaushik SC, Ranjan KR, et al. State-of-the-art of solar thermal power plants—A review. Renew Sustain Energy Rev, 2013, 27: 258–273CrossRefGoogle Scholar
  8. 8.
    M C Yadav A. Water desalination system using solar heat: A review. Renew Sustain Energy Rev, 2017, 67: 1308–1330CrossRefGoogle Scholar
  9. 9.
    Eltawil MA, Zhengming Z, Yuan L. A review of renewable energy technologies integrated with desalination systems. Renew Sustain Energy Rev, 2009, 13: 2245–2262CrossRefGoogle Scholar
  10. 10.
    Liu Y, Lou J, Ni M, et al. Bioinspired bifunctional membrane for efficient clean water generation. ACS Appl Mater Interfaces, 2016, 8: 772–779CrossRefGoogle Scholar
  11. 11.
    Neumann O, Neumann AD, Silva E, et al. Nanoparticle-mediated, light-induced phase separations. Nano Lett, 2015, 15: 7880–7885CrossRefGoogle Scholar
  12. 12.
    Neumann O, Urban AS, Day J, et al. Solar vapor generation enabled by nanoparticles. ACS Nano, 2013, 7: 42–49CrossRefGoogle Scholar
  13. 13.
    Ghasemi H, Ni G, Marconnet AM, et al. Solar steam generation by heat localization. Nat Commun, 2014, 5: 4449CrossRefGoogle Scholar
  14. 14.
    Bae K, Kang G, Cho SK, et al. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat Commun, 2015, 6: 10103CrossRefGoogle Scholar
  15. 15.
    Zhou L, Tan Y, Ji D, et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci Adv, 2016, 2: e1501227–e1501227CrossRefGoogle Scholar
  16. 16.
    Zhou L, Tan Y, Wang J, et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat Photonics, 2016, 10: 393–398CrossRefGoogle Scholar
  17. 17.
    Zhou L, Zhuang S, He C, et al. Self-assembled spectrum selective plasmonic absorbers with tunable bandwidth for solar energy conversion. Nano Energy, 2017, 32: 195–200CrossRefGoogle Scholar
  18. 18.
    Zielinski MS, Choi JW, La Grange T, et al. Hollow mesoporous plasmonic nanoshells for enhanced solar vapor generation. Nano Lett, 2016, 16: 2159–2167CrossRefGoogle Scholar
  19. 19.
    Ren P, Yang X. Synthesis and photo-thermal conversion properties of hierarchical titanium nitride nanotube mesh for solar water evaporation. Sol RRL, 2018, 2: 1700233CrossRefGoogle Scholar
  20. 20.
    Wang X, He Y, Cheng G, et al. Direct vapor generation through localized solar heating via carbon-nanotube nanofluid. Energy Convers Manage, 2016, 130: 176–183CrossRefGoogle Scholar
  21. 21.
    Ito Y, Tanabe Y, Han J, et al. Multifunctional porous graphene for high-efficiency steam generation by heat localization. Adv Mater, 2015, 27: 4302–4307CrossRefGoogle Scholar
  22. 22.
    Li Y, Gao T, Yang Z, et al. 3D-printed, all-in-one evaporator for high-efficiency solar steam generation under 1 sun illumination. Adv Mater, 2017, 29: 1700981CrossRefGoogle Scholar
  23. 23.
    Sajadi SM, Farokhnia N, Irajizad P, et al. Flexible artificially-networked structure for ambient/high pressure solar steam generation. J Mater Chem A, 2016, 4: 4700–4705CrossRefGoogle Scholar
  24. 24.
    Ding H, Peng G, Mo S, et al. Ultra-fast vapor generation by a graphene nano-ratchet: a theoretical and simulation study. Nanoscale, 2017, 9: 19066–19072CrossRefGoogle Scholar
  25. 25.
    Li X, Xu W, Tang M, et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc Natl Acad Sci USA, 2016, 113: 13953–13958CrossRefGoogle Scholar
  26. 26.
    Wang J, Li Y, Deng L, et al. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv Mater, 2017, 29: 1603730CrossRefGoogle Scholar
  27. 27.
    Ye M, Jia J, Wu Z, et al. Synthesis of Black TiOx nanoparticles by Mg reduction of TiO2 nanocrystals and their application for solar water evaporation. Adv Energy Mater, 2017, 7: 1601811CrossRefGoogle Scholar
  28. 28.
    Chen C, Zhou L, Yu J, et al. Dual functional asymmetric plasmonic structures for solar water purification and pollution detection. Nano Energy, 2018, 51: 451–456CrossRefGoogle Scholar
  29. 29.
    Wang X, He Y, Liu X, et al. Solar steam generation through bioinspired interface heating of broadband-absorbing plasmonic membranes. Appl Energy, 2017, 195: 414–425CrossRefGoogle Scholar
  30. 30.
    Xu W, Hu X, Zhuang S, et al. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination. Adv Energy Mater, 2018, 8: 1702884CrossRefGoogle Scholar
  31. 31.
    Wang G, Fu Y, Ma X, et al. Reusable reduced graphene oxide based double-layer system modified by polyethylenimine for solar steam generation. Carbon, 2017, 114: 117–124CrossRefGoogle Scholar
  32. 32.
    Li X, Lin R, Ni G, et al. Three-dimensional artificial transpiration for efficient solar waste-water treatment. Natl Sci Rev, 2018, 5: 70–77CrossRefGoogle Scholar
  33. 33.
    Hu X, Xu W, Zhou L, et al. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Adv Mater, 2017, 29: 1604031CrossRefGoogle Scholar
  34. 34.
    Ren H, Tang M, Guan B, et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv Mater, 2017, 29: 1702590CrossRefGoogle Scholar
  35. 35.
    Zhao F, Zhou X, Shi Y, et al. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat Nanotechnol, 2018, 13: 489–495CrossRefGoogle Scholar
  36. 36.
    Mahltig B, Swaboda C, Roessler A, et al. Functionalising wood by nanosol application. J Mater Chem, 2008, 18: 3180CrossRefGoogle Scholar
  37. 37.
    Zhu H, Jia Z, Chen Y, et al. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett, 2013, 13: 3093–3100CrossRefGoogle Scholar
  38. 38.
    Zhu M, Song J, Li T, et al. Highly anisotropic, highly transparent wood composites. Adv Mater, 2016, 28: 5181–5187CrossRefGoogle Scholar
  39. 39.
    Sehaqui H, Zhou Q, Berglund LA. Nanostructured biocomposites of high toughness—a wood cellulose nanofiber network in ductile hydroxyethylcellulose matrix. Soft Matter, 2011, 7: 7342–7350CrossRefGoogle Scholar
  40. 40.
    Xue G, Liu K, Chen Q, et al. Robust and low-cost flame-treated wood for high-performance solar steam generation. ACS Appl Mater Interfaces, 2017, 9: 15052–15057CrossRefGoogle Scholar
  41. 41.
    Liu KK, Jiang Q, Tadepalli S, et al. Wood–graphene oxide composite for highly efficient solar steam generation and desalination. ACS Appl Mater Interfaces, 2017, 9: 7675–7681CrossRefGoogle Scholar
  42. 42.
    Chen C, Li Y, Song J, et al. Highly flexible and efficient solar steam generation device. Adv Mater, 2017, 29: 1701756CrossRefGoogle Scholar
  43. 43.
    Zhu M, Li Y, Chen F, et al. Plasmonic wood for high-efficiency solar steam generation. Adv Energy Mater, 2018, 8: 1701028CrossRefGoogle Scholar
  44. 44.
    Xu N, Hu X, Xu W, et al. Mushrooms as efficient solar steamgeneration devices. Adv Mater, 2017, 29: 1606762CrossRefGoogle Scholar
  45. 45.
    Li X, Li J, Lu J, et al. Enhancement of interfacial solar vapor generation by environmental energy. Joule, 2018, 2: 1331–1338CrossRefGoogle Scholar
  46. 46.
    Guler U, Shalaev VM, Boltasseva A. Nanoparticle plasmonics: going practical with transition metal nitrides. Mater Today, 2015, 18: 227–237CrossRefGoogle Scholar
  47. 47.
    Zhang J, Chen TP, Li XD, et al. Investigation of localized surface plasmon resonance of TiN nanoparticles in TiNxOy thin films. Opt Mater Express, 2016, 6: 2422CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Dongfang Guo (郭东方)
    • 1
  • Xiuchun Yang (杨修春)
    • 1
    • 2
    Email author
  1. 1.School of Materials Science and EngineeringTongji UniversityShanghaiChina
  2. 2.Key Laboratory of Advanced Civil Engineering Materials (Tongji University), Education of MinistryShanghaiChina

Personalised recommendations