Advertisement

Science China Materials

, Volume 62, Issue 3, pp 368–378 | Cite as

Dual upconversion nanophotoswitch for security encoding

  • Weijing Yao (姚伟睛)
  • Qingyong Tian (田青勇)
  • Bin Tian (田彬)
  • Mengxiao Li (李梦晓)
  • Huanjun Wang (王焕军)
  • Pan Zeng (曾盼)
  • Li Liu (刘力)
  • He Zheng (郑赫)
  • Wei Wu (吴伟)Email author
Articles

Abstract

Light-harvesting lanthanide ions (Ln3+) doped NaYF4 inks could provide polychromatic patterns for opposing counterfeiting commodity infestation because of their distinctive upconversion photoluminescence (UPL) properties. Herein, three kinds of core-triple-shell Ln3+ ions doped NaYF4 upconversion nanocrystals (UCNCs) are synthesized through modified high-temperature coprecipitation, which demonstrate excellent UPL properties of independent emitting colors under 808 or 980 nm laser excitation. Additive mixing three kinds of 808 nm emitted red-green-blue (RGB) UCNCs colloid solution can precisely regulate the emissions of the suspension for achieving full-color display. The as-obtained RGB three-primary colors induced by 808 nm laser accomplish broader color gamut than traditional standard RGB (sRGB) model and printing cyan-magenta-yellow (CMY) model. In addition, various China zodiac patterns and complex multicolor images are printed by the as-formulated UCNCs inks through screen printing technology. The printed patterns present colorful and polychromatic sequential toning visualization patterns under 808 nm excitation, while present another succession of gradually changed versatile patterns under 980 nm excitation. As a proof of concept, transparent polyvinyl chloride (PVC) self-adhesive anti-counterfeiting label is attached to the bottle of wine package for practical application. The demonstration of multiple model patterns of Chinese zodiac and poetry images based on these core-tripleshell UCNCs can be selected as a conceivable substitute of traditional single model patterns, underlining the full-color anti-counterfeiting level.

Keywords

Upconversion core-triple-shell UCNCs wide color gamut full-color model anti-counterfeiting 

用于安全编码的双模式上转换纳米光开关

摘要

镧系离子掺杂的NaYF4油墨由于其独特的上转换光致发光特性可以被应用到防伪领域. 本文首先通过高温共沉淀法合成了三种核-壳结构的镧系离子掺杂的NaYF4上转换纳米材料, 它们在808和980 nm激光激发下均可以表现出差异性的上转换荧光性能. 其次, 通过物理混合808 nm激发的不同颜色的悬溶液红绿蓝, 可以调节混合液的发光颜色, 实现全彩色显示. 808 nm激发产生的颜色可以实现比sRGB和印刷CMY颜色空间模型更宽的色域. 最后, 我们使用传统丝网印刷技术印刷出中国十二生肖图案和其他大面积的复杂图像, 印刷图案在808 nm激发下可以呈现出一组多色连续的图案, 同时在980 nm激发下也可呈现出另一组逐渐改变的多色图案, 而且,印刷在透明聚氯乙烯PVC标签的图案可以附在酒瓶包装上, 实现酒瓶包装的防伪. 基于NaYF4的双模式荧光图案可以替代传统单模式荧光图案, 实现高水平的全色防伪及安全编码.

Notes

Acknowledgements

The work was supported by the National Natural Science Foundation of China (51471121), the Basic Research Plan Program of Shenzhen City (JCYJ20160517104459444 and JCYJ20170303170426117), the Natural Science Foundation of Jiangsu Province (BK20160383), the Fundamental Research Funds for the Central Universities (2042018kf203) and Wuhan University.

Supplementary material

40843_2018_9341_MOESM1_ESM.pdf (683 kb)
Dual Upconversion Nanophotoswitch for Security Encoding

References

  1. 1.
    Han S, Bae HJ, Kim J, et al. Lithographically encoded polymer microtaggant using high-capacity and error-correctable QRcode for anti-counterfeiting of drugs. Adv Mater, 2012, 24: 5924–5929CrossRefGoogle Scholar
  2. 2.
    Höppe HA. Recent developments in the field of inorganic phosphors. Angew Chem Int Ed, 2009, 48: 3572–3582CrossRefGoogle Scholar
  3. 3.
    Wu W. Inorganic nanomaterials for printed electronics: A review. Nanoscale, 2017, 9: 7342–7372CrossRefGoogle Scholar
  4. 4.
    Smith AF, Skrabalak SE. Metal nanomaterials for optical anticounterfeit labels. J Mater Chem C, 2017, 5: 3207–3215CrossRefGoogle Scholar
  5. 5.
    Lee J, Bisso PW, Srinivas RL, et al. Universal process-inert encoding architecture for polymer microparticles. Nat Mater, 2014, 13: 524–529CrossRefGoogle Scholar
  6. 6.
    Kumar P, Singh S, Gupta BK. Future prospects of luminescent nanomaterial based security inks: From synthesis to anti-coun-terfeiting applications. Nanoscale, 2016, 8: 14297–14340CrossRefGoogle Scholar
  7. 7.
    You M, Lin M, Wang S, et al. Three-dimensional quick response code based on inkjet printing of upconversion fluorescent nanoparticles for drug anti-counterfeiting. Nanoscale, 2016, 8: 10096–10104CrossRefGoogle Scholar
  8. 8.
    Zhou L, Wang R, Yao C, et al. Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers. Nat Commun, 2015, 6: 6938CrossRefGoogle Scholar
  9. 9.
    Gorris HH, Wolfbeis OS. Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres. Angew Chem Int Ed, 2013, 52: 3584–3600CrossRefGoogle Scholar
  10. 10.
    Meruga JM, Baride A, Cross W, et al. Red-Green-Blue printing using luminescence-upconversion inks. J Mater Chem C, 2014, 2: 2221–2227CrossRefGoogle Scholar
  11. 11.
    Kumar P, Dwivedi J, Gupta BK. Highly luminescent dual mode rare-earth nanorod assisted multi-stage excitable security ink for anti-counterfeiting applications. J Mater Chem C, 2014, 2: 10468–10475CrossRefGoogle Scholar
  12. 12.
    Chen O, Shelby DE, Yang Y, et al. Excitation-intensity-dependent color-tunable dual emissions from manganese-doped CdS/ZnS core/shell nanocrystals. Angew Chem Int Ed, 2010, 49: 10132–10135CrossRefGoogle Scholar
  13. 13.
    Kim TH, Cho KS, Lee EK, et al. Full-colour quantum dot displays fabricated by transfer printing. Nat Photon, 2011, 5: 176–182CrossRefGoogle Scholar
  14. 14.
    Sun YP, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc, 2006, 128: 7756–7757CrossRefGoogle Scholar
  15. 15.
    De Cremer G, Sels BF, Hotta J, et al. Optical encoding of silver zeolite microcarriers. Adv Mater, 2010, 22: 957–960CrossRefGoogle Scholar
  16. 16.
    Blumenthal T, Meruga J, Stanley May P, et al. Patterned directwrite and screen-printing of NIR-to-Visible upconverting inks for security applications. Nanotechnology, 2012, 23: 185305CrossRefGoogle Scholar
  17. 17.
    You M, Zhong J, Hong Y, et al. Inkjet printing of upconversion nanoparticles for anti-counterfeit applications. Nanoscale, 2015, 7: 4423–4431CrossRefGoogle Scholar
  18. 18.
    Tian Q, Yao W, Wu Z, et al. Full-spectrum-activated Z-scheme photocatalysts based on NaYF4:Yb3+/Er3+, TiO2 and Ag6 Si2O7. J Mater Chem A, 2017, 5: 23566–23576CrossRefGoogle Scholar
  19. 19.
    Liu X, Wang Y, Li X, et al. Binary temporal upconversion codes of Mn2+-activated nanoparticles for multilevel anti-counterfeiting. Nat Commun, 2017, 8: 899CrossRefGoogle Scholar
  20. 20.
    Yao W, Tian Q, Liu J, et al. Large-scale synthesis and screen printing of upconversion hexagonal-phase NaYF4:Yb3+,Tm3+/Er3+/ Eu3+ plates for security applications. J Mater Chem C, 2016, 4: 6327–6335CrossRefGoogle Scholar
  21. 21.
    Bünzli JCG, Piguet C. Taking advantage of luminescent lanthanide ions. Chem Soc Rev, 2005, 34: 1048–1077CrossRefGoogle Scholar
  22. 22.
    Gai S, Li C, Yang P, et al. Recent progress in rare earth micro/ nanocrystals: Soft chemical synthesis, luminescent properties, and biomedical applications. Chem Rev, 2014, 114: 2343–2389CrossRefGoogle Scholar
  23. 23.
    Mai HX, Zhang YW, Si R, et al. High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J Am Chem Soc, 2006, 128: 6426–6436CrossRefGoogle Scholar
  24. 24.
    Tian Q, Yao W, Wu W, et al. Efficient UV–vis-NIR responsive upconversion and plasmonic-enhanced photocatalyst based on lanthanide-doped NaYF4/SnO2/Ag. ACS Sustain Chem Eng, 2017, 5: 10889–10899CrossRefGoogle Scholar
  25. 25.
    Yao W, Tian Q, Liu J, et al. Preparation and RGB upconversion optic properties of transparent anti-counterfeiting films. Nanoscale, 2017, 9: 15982–15989CrossRefGoogle Scholar
  26. 26.
    Liu Y, Tu D, Zhu H, et al. Lanthanide-doped luminescent nanoprobes: Controlled synthesis, optical spectroscopy, and bioapplications. Chem Soc Rev, 2013, 42: 6924–6958CrossRefGoogle Scholar
  27. 27.
    Zhou B, Tao L, Chai Y, et al. Constructing interfacial energy transfer for photon up- and down-conversion from lanthanides in a core-shell nanostructure. Angew Chem, 2016, 128: 12544–12548CrossRefGoogle Scholar
  28. 28.
    Chen X, Peng D, Ju Q, et al. Photon upconversion in core–shell nanoparticles. Chem Soc Rev, 2015, 44: 1318–1330CrossRefGoogle Scholar
  29. 29.
    Chan EM, Levy ES, Cohen BE. Rationally designed energy transfer in upconverting nanoparticles. Adv Mater, 2015, 27: 5753–5761CrossRefGoogle Scholar
  30. 30.
    Li M, Yao W, Liu J, et al. Facile synthesis and screen printing of dual-mode luminescent NaYF4:Er,Yb (Tm)/carbon dots for anticounterfeiting applications. J Mater Chem C, 2017, 5: 6512–6520CrossRefGoogle Scholar
  31. 31.
    Chen G, Yang C, Prasad PN. Nanophotonics and nanochemistry: Controlling the excitation dynamics for frequency up- and downconversion in lanthanide-doped nanoparticles. Acc Chem Res, 2013, 46: 1474–1486CrossRefGoogle Scholar
  32. 32.
    Cheng ZY, Liu Y, Chang CC, et al. Authenticated rfid security mechanism based on chaotic maps. Security Comm Networks, 2013, 6: 247–256CrossRefGoogle Scholar
  33. 33.
    Ni M, Peng H, Liao Y, et al. 3D image storage in photopolymer/ ZnS nanocomposites tailored by “photoinitibitor”. Macromolecules, 2015, 48: 2958–2966CrossRefGoogle Scholar
  34. 34.
    Peng H, Bi S, Ni M, et al. Monochromatic visible light “photoinitibitor”: Janus-faced initiation and inhibition for storage of colored 3D images. J Am Chem Soc, 2014, 136: 8855–8858CrossRefGoogle Scholar
  35. 35.
    Wen H, Zhu H, Chen X, et al. Upconverting near-infrared light through energy management in core-shell-shell nanoparticles. Angew Chem Int Ed, 2013, 52: 13419–13423CrossRefGoogle Scholar
  36. 36.
    Li X, Guo Z, Zhao T, et al. Filtration shell mediated power density independent orthogonal excitations-emissions upconversion luminescence. Angew Chem Int Ed, 2016, 55: 2464–2469CrossRefGoogle Scholar
  37. 37.
    McGavin D, Stukenborg B, Witkowski M. Color figures in BJ: RGB versus CMYK. Biophys J, 2005, 88: 761–762CrossRefGoogle Scholar
  38. 38.
    Xie X, Li Z, Zhang Y, et al. Emerging ≈800 nm excited lanthanidedoped upconversion nanoparticles. Small, 2017, 13: 1602843CrossRefGoogle Scholar
  39. 39.
    Wang YF, Liu GY, Sun LD, et al. Nd3+-sensitized upconversion nanophosphors: efficientin vivo bioimaging probes with minimized heating effect. ACS Nano, 2013, 7: 7200–7206CrossRefGoogle Scholar
  40. 40.
    Shen J, Chen G, Vu AM, et al. Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tridoped upconversion colloidal nanoparticles at 800 nm. Adv Opt Mater, 2013, 1: 644–650CrossRefGoogle Scholar
  41. 41.
    Wang L, Li Y. Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals. Chem Mater, 2007, 19: 727–734CrossRefGoogle Scholar
  42. 42.
    Li X, Wang R, Zhang F, et al. Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency. Nano Lett, 2014, 14: 3634–3639CrossRefGoogle Scholar
  43. 43.
    Meruga JM, Cross WM, Stanley May P, et al. Security printing of covert quick response codes using upconverting nanoparticle inks. Nanotechnology, 2012, 23: 395201CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Weijing Yao (姚伟睛)
    • 1
  • Qingyong Tian (田青勇)
    • 1
  • Bin Tian (田彬)
    • 1
  • Mengxiao Li (李梦晓)
    • 1
  • Huanjun Wang (王焕军)
    • 1
  • Pan Zeng (曾盼)
    • 1
  • Li Liu (刘力)
    • 1
  • He Zheng (郑赫)
    • 2
  • Wei Wu (吴伟)
    • 1
    • 3
    • 4
    Email author
  1. 1.Laboratory of Printable Functional Nanomaterials and Printed Electronics, School of Printing and PackagingWuhan UniversityWuhanChina
  2. 2.School of Physics and TechnologyWuhan UniversityWuhanChina
  3. 3.Shenzhen Research Institute of Wuhan UniversityShenzhenChina
  4. 4.National & Local Joint Engineering Research Center of Advanced Packaging Materials Developing TechnologyHunan University of TechnologyZhuzhouChina

Personalised recommendations