Advertisement

Science China Materials

, Volume 62, Issue 2, pp 161–172 | Cite as

Elucidating the dynamics of solvent engineering for perovskite solar cells

  • Zulqarnain Arain
  • Cheng Liu (刘成)
  • Yi Yang (杨熠)
  • M. Mateen
  • Yinke Ren (任英科)
  • Yong Ding (丁勇)
  • Xuepeng Liu (刘雪朋)
  • Zulfiqar Ali
  • Manoj Kumar
  • Songyuan Dai (戴松元)
Review
  • 145 Downloads

Abstract

Researchers working in the field of photovoltaic are exploring novel materials for the efficient solar energy conversion. The prime objective of the discovery of every novel photovoltaic material is to achieve more energy yield with easy fabrication process and less production cost features. Perovskite solar cells (PSCs) delivering the highest efficiency in the passing years with different stoichiometry and fabrication modification has made this technology a potent candidate for future energy conversion materials. Till now, many studies have shown that the quality of active layer morphology, to a great extent, determines the performance of PSCs. The current and potential techniques of solvent engineering for good active layer morphology are mainly debated using primary solvent, co-solvent (Lewis acid-base adduct approach) and solvent additives. In this review, the dynamics of numerously reported solvents on the morphological characteristics of PSCs active layer are discussed in detail. The intention is to get a clear understanding of solvent engineering induced modifications on active layer morphology in PSC devices via different crystallization routes. At last, an attempt is made to draw a framework based on different solvent coordination properties to make it easy for screening the potent solvent contender for desired PSCs precursor for a better and feasible device.

Keywords

perovskite solvent engineering Lewis acid-base additive coordination property 

钙钛矿太阳电池溶剂工程的动力学阐述

摘要

光伏领域的研究者们在不断探索可以用于高效太阳能转换的新材料. 研究每种新型光伏材料的主要目的是通过简单的制造工艺和 较低的生产成本来实现更高的能量产出. 新兴的钙钛矿材料也在竞争行列之中. 通过不同的化学计量调控和工艺改进, 钙钛矿太阳电池在 过去的几年中实现了最高的光电转换效率, 这一技术已经成为未来能量转换材料的有力候选者. 到目前为止, 许多研究表明活性层的薄膜 质量在很大程度上决定了钙钛矿太阳电池的光电性能. 当前和潜在的用于制备良好活性层形貌的溶剂工程技术大体上是使用主要溶剂、 共溶剂(路易斯酸-碱加合方法)和溶剂添加剂来实现. 在这篇综述中, 我们详细讨论了多种已报道的溶剂工程动力学对钙钛矿太阳电池活 性层形态特征的影响. 目的是通过不同的结晶过程得到一个关于溶剂工程如何诱导钙钛矿太阳电池活性层形貌的清晰的认知. 最后, 我们 基于不同溶剂的配位性质绘制了一个基本框架, 便于筛选可用来制备钙钛矿前驱体的有效溶剂, 以获得性能更好和可行性更高的光伏器件.

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFA0202400), the 111 project (B16016), and the National Natural Science Foundation of China (51572080, 51702096, and U1705256).

References

  1. 1.
    Cheng Z, Lin J. Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering. CrystEngComm, 2010, 12: 2646CrossRefGoogle Scholar
  2. 2.
    Stranks SD, Eperon GE, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342: 341–344CrossRefGoogle Scholar
  3. 3.
    Ren YK, Ding XH, Wu YH, et al. Temperature-assisted rapid nucleation: a facile method to optimize the film morphology for perovskite solar cells. J Mater Chem A, 2017, 5: 20327–20333CrossRefGoogle Scholar
  4. 4.
    Liu C, Yang Y, Ding Y, et al. High-efficiency and UV-stable planar perovskite solar cells using a low-temperature, solution-processed electron-transport layer. ChemSusChem, 2018, 11: 1232–1237CrossRefGoogle Scholar
  5. 5.
    Im JH, Lee CR, Lee JW, et al. 6.5% efficient perovskite quantumdot-sensitized solar cell. Nanoscale, 2011, 3: 4088–4093CrossRefGoogle Scholar
  6. 6.
    Yang WS, Park BW, Jung EH, et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science, 2017, 356: 1376–1379CrossRefGoogle Scholar
  7. 7.
    Green MA, Emery K, Hishikawa Y, et al. Solar cell efficiency tables (version 46). Prog Photovolt-Res Appl, 2015, 23: 805–812CrossRefGoogle Scholar
  8. 8.
    Xing G, Mathews N, Sun S, et al. Long-range balanced electronand hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342: 344–347CrossRefGoogle Scholar
  9. 9.
    Shi D, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347: 519–522CrossRefGoogle Scholar
  10. 10.
    Liu M, Johnston MB, Snaith HJ. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501: 395–398CrossRefGoogle Scholar
  11. 11.
    Burschka J, Pellet N, Moon SJ, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499: 316–319CrossRefGoogle Scholar
  12. 12.
    Chen Q, Zhou H, Hong Z, et al. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J Am Chem Soc, 2014, 136: 622–625CrossRefGoogle Scholar
  13. 13.
    Xiao M, Huang F, Huang W, et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew Chem Int Ed, 2014, 53: 9898–9903CrossRefGoogle Scholar
  14. 14.
    Liang PW, Liao CY, Chueh CC, et al. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv Mater, 2014, 26: 3748–3754CrossRefGoogle Scholar
  15. 15.
    Jeon NJ, Noh JH, Kim YC, et al. Solvent engineering for highperformance inorganic–organic hybrid perovskite solar cells. Nat Mater, 2014, 13: 897–903CrossRefGoogle Scholar
  16. 16.
    Yakunin S, Sytnyk M, Kriegner D, et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat Photonics, 2015, 9: 444–449CrossRefGoogle Scholar
  17. 17.
    Luo J, Im JH, Mayer MT, et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science, 2014, 345: 1593–1596CrossRefGoogle Scholar
  18. 18.
    Dong Q, Fang Y, Shao Y, et al. Electron-hole diffusion lengths >175 µm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347: 967–970CrossRefGoogle Scholar
  19. 19.
    de Quilettes DW, Vorpahl SM, Stranks SD, et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science, 2015, 348: 683–686CrossRefGoogle Scholar
  20. 20.
    Stranks SD, Burlakov VM, Leijtens T, et al. Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states. Phys Rev Appl, 2014, 2: 034007CrossRefGoogle Scholar
  21. 21.
    Mehmood U, Al-Ahmed A, Afzaal M, et al. Recent progress and remaining challenges in organometallic halides based perovskite solar cells. Renew Sust Energ Rev, 2017, 78: 1–14CrossRefGoogle Scholar
  22. 22.
    Yang WS, Noh JH, Jeon NJ, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348: 1234–1237CrossRefGoogle Scholar
  23. 23.
    Ahn N, Son DY, Jang IH, et al. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide. J Am Chem Soc, 2015, 137: 8696–8699CrossRefGoogle Scholar
  24. 24.
    Kim HB, Choi H, Jeong J, et al. Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells. Nanoscale, 2014, 6: 6679–6683CrossRefGoogle Scholar
  25. 25.
    Lian J, Wang Q, Yuan Y, et al. Organic solvent vapor sensitive methylammonium lead trihalide film formation for efficient hybrid perovskite solar cells. J Mater Chem A, 2015, 3: 9146–9151CrossRefGoogle Scholar
  26. 26.
    Cai B, Zhang WH, Qiu J. Solvent engineering of spin-coating solutions for planar-structured high-efficiency perovskite solar cells. Chin J Catal, 2015, 36: 1183–1190CrossRefGoogle Scholar
  27. 27.
    Song TB, Chen Q, Zhou H, et al. Perovskite solar cells: film formation and properties. J Mater Chem A, 2015, 3: 9032–9050CrossRefGoogle Scholar
  28. 28.
    Wu Y, Islam A, Yang X, et al. Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ Sci, 2014, 7: 2934–2938CrossRefGoogle Scholar
  29. 29.
    Chen J, Xiong Y, Rong Y, et al. Solvent effect on the hole-conductor-free fully printable perovskite solar cells. Nano Energy, 2016, 27: 130–137CrossRefGoogle Scholar
  30. 30.
    Lin SQ, Li W, Sun, HC, et al. Effects of different solvents on the planar hetero-junction perovskite solar cells. ICETA, 2015, 22: 05002Google Scholar
  31. 31.
    Seo YH, Kim EC, Cho SP, et al. High-performance planar perovskite solar cells: Influence of solvent upon performance. Appl Mater Today, 2017, 9: 598–604CrossRefGoogle Scholar
  32. 32.
    Guo X, McCleese C, Kolodziej C, et al. Identification and characterization of the intermediate phase in hybrid organic–inorganic MAPbI3 perovskite. Dalton Trans, 2016, 45: 3806–3813CrossRefGoogle Scholar
  33. 33.
    Nie W, Tsai H, Asadpour R, et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 2015, 347: 522–525CrossRefGoogle Scholar
  34. 34.
    Aldibaja FK, Badia L, Mas-Marzá E, et al. Effect of different lead precursors on perovskite solar cell performance and stability. J Mater Chem A, 2015, 3: 9194–9200CrossRefGoogle Scholar
  35. 35.
    Xie FX, Zhang D, Su H, et al. Vacuum-assisted thermal annealing of CH3NH3PbI3 for highly stable and efficient perovskite solar cells. ACS Nano, 2015, 9: 639–646CrossRefGoogle Scholar
  36. 36.
    Fang X, Wu Y, Lu Y, et al. Annealing-free perovskite films based on solvent engineering for efficient solar cells. J Mater Chem C, 2017, 5: 842–847CrossRefGoogle Scholar
  37. 37.
    Dubey A, Kantack N, Adhikari N, et al. Room temperature, air crystallized perovskite film for high performance solar cells. J Mater Chem A, 2016, 4: 10231–10240CrossRefGoogle Scholar
  38. 38.
    Zuo L, Dong S, De Marco N, et al. Morphology evolution of high efficiency perovskite solar cells via vapor induced intermediate phases. J Am Chem Soc, 2016, 138: 15710–15716CrossRefGoogle Scholar
  39. 39.
    Rong Y, Tang Z, Zhao Y, et al. Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells. Nanoscale, 2015, 7: 10595–10599CrossRefGoogle Scholar
  40. 40.
    Wakamiya A, Endo M, Sasamori T, et al. Reproducible fabrication of efficient perovskite-based solar cells: X-ray crystallographic studies on the formation of CH3NH3PbI3 layers. Chem Lett, 2014, 43: 711–713CrossRefGoogle Scholar
  41. 41.
    Li W, Fan J, Li J, et al. Controllable grain morphology of perovskite absorber film by molecular self-assembly toward efficient solar cell exceeding 17%. J Am Chem Soc, 2015, 137: 10399–10405CrossRefGoogle Scholar
  42. 42.
    Miyamae H, Numahata Y, Nagata M. The crystal structure of lead (II) iodide-dimethylsulphoxide(1/2), PbI2(DMSO)2. Chem Lett, 1980, 9: 663–664CrossRefGoogle Scholar
  43. 43.
    Dualeh A, Tétreault N, Moehl T, et al. Effect of annealing temperature on film morphology of organic-inorganic hybrid pervoskite solid-state solar cells. Adv Funct Mater, 2014, 24: 3250–3258CrossRefGoogle Scholar
  44. 44.
    Ren Y, Duan B, Xu Y, et al. New insight into solvent engineering technology from evolution of intermediates via one-step spincoating approach. Sci China Mater, 2017, 60: 392–398CrossRefGoogle Scholar
  45. 45.
    Krautscheid H, Vielsack F. Discrete and polymeric iodoplumbates with Pb3I10 building blocks: [Pb3I10] 4-, [Pb7I22]8-, [Pb10I28]8-, 1 8[Pb3I10]4-and 2 8[Pb7I18]4-. Dalton Trans, 1999, 16: 2731–2735CrossRefGoogle Scholar
  46. 46.
    Krautscheid H, Vielsack F. [BuN(CH2CH2)3NBu]3[Pb5I16] · 4DMF–ein Iodoplumbat mit Nahe zu D5h-symmetrischem Anion. Z Anorg Allg Chem, 2000, 626: 3–5CrossRefGoogle Scholar
  47. 47.
    Wharf I, Gramstad T, Makhija R, et al. Synthesis and vibrational spectra of some lead(II) halide adducts with O-, S-, and N-donor atom ligands. Can J Chem, 1976, 54: 3430–3438CrossRefGoogle Scholar
  48. 48.
    Ren YK, Liu SD, Duan B, et al. Controllable intermediates by molecular self-assembly for optimizing the fabrication of largegrain perovskite films via one-step spin-coating. J Alloys Compd, 2017, 705: 205–210CrossRefGoogle Scholar
  49. 49.
    Pavia DL, Lampman GM, Kriz GS, et al. Introduction to Spectroscopy (4th Edition). Belmont: Cengage Learning, 2009Google Scholar
  50. 50.
    Colthup NB, Daly LH, Wiberley SE. Introduction to Infrared and Raman Spectroscopy (Second Edition). New York: Academic Press, 1975Google Scholar
  51. 51.
    Lee JW, Kim HS, Park NG. Lewis acid–base adduct approach for high efficiency perovskite solar cells. Acc Chem Res, 2016, 49: 311–319CrossRefGoogle Scholar
  52. 52.
    Madhurambal G, Mariappan M, Mojumdar SC. TG–DTA, UV and FTIR spectroscopic studies of urea–thiourea mixed crystal. J Therm Anal Calorim, 2010, 100: 853–856CrossRefGoogle Scholar
  53. 53.
    Seo YH, Kim EC, Cho SP, et al. Hysteresis data of planar perovskite solar cells fabricated with different solvents. Data Brief, 2018, 16: 418–422CrossRefGoogle Scholar
  54. 54.
    Zhang Y, Gao P, Oveisi E, et al. PbI2–HMPA complex pretreatment for highly reproducible and efficient CH3NH3PbI3 perovskite solar cells. J Am Chem Soc, 2016, 138: 14380–14387CrossRefGoogle Scholar
  55. 55.
    Wu T, Wu J, Tu Y, et al. Solvent engineering for high-quality perovskite solar cell with an efficiency approaching 20%. J Power Sources, 2017, 365: 1–6CrossRefGoogle Scholar
  56. 56.
    Hao F, Stoumpos CC, Guo P, et al. Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. J Am Chem Soc, 2015, 137: 11445–11452CrossRefGoogle Scholar
  57. 57.
    Eperon GE, Stranks SD, Menelaou C, et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci, 2014, 7: 982CrossRefGoogle Scholar
  58. 58.
    Yang L, Wang J, Leung WWF. Lead iodide thin film crystallization control for high-performance and stable solution-processed perovskite solar cells. ACS Appl Mater Interfaces, 2015, 7: 14614–14619CrossRefGoogle Scholar
  59. 59.
    Carnie MJ, Charbonneau C, Davies ML, et al. A one-step low temperature processing route for organolead halide perovskite solar cells. Chem Commun, 2013, 49: 7893CrossRefGoogle Scholar
  60. 60.
    Zhao Y, Zhu K. CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. J Phys Chem C, 2014, 118: 9412–9418CrossRefGoogle Scholar
  61. 61.
    Chang CY, Chu CY, Huang YC, et al. Tuning perovskite morphology by polymer additive for high efficiency solar cell. ACS Appl Mater Interfaces, 2015, 7: 4955–4961CrossRefGoogle Scholar
  62. 62.
    Zhang H, Mao J, He H, et al. A smooth CH3NH3PbI3 film via a new approach for forming the PbI2 nanostructure together with strategically high CH3NH3I concentration for high efficient planarheterojunction solar cells. Adv Energy Mater, 2015, 5: 1501354CrossRefGoogle Scholar
  63. 63.
    Shi Y, Wang X, Zhang H, et al. Effects of 4-tert-butylpyridine on perovskite formation and performance of solution-processed perovskite solar cells. J Mater Chem A, 2015, 3: 22191–22198CrossRefGoogle Scholar
  64. 64.
    Zhi L, Li Y, Cao X, et al. Perovskite solar cells fabricated by using an environmental friendly aprotic polar additive of 1,3-dimethyl-2-imidazolidinone. Nanoscale Res Lett, 2017, 12: 632CrossRefGoogle Scholar
  65. 65.
    Lo CC, Chao PM. Replacement of carcinogenic solvent HMPA by DMI in insect sex pheromone synthesis. J Chem Ecol, 1990, 16: 3245–3253CrossRefGoogle Scholar
  66. 66.
    Gong X, Li M, Shi XB, et al. Controllable perovskite crystallization by water additive for high-performance solar cells. Adv Funct Mater, 2015, 25: 6671–6678CrossRefGoogle Scholar
  67. 67.
    Li L, Chen Y, Liu Z, et al. The additive coordination effect on hybrids perovskite crystallization and high-performance solar cell. Adv Mater, 2016, 28: 9862–9868CrossRefGoogle Scholar
  68. 68.
    Stamplecoskie KG, Manser JS, Kamat PV. Dual nature of the excited state in organic–inorganic lead halide perovskites. Energy Environ Sci, 2015, 8: 208–215CrossRefGoogle Scholar
  69. 69.
    Stewart RJ, Grieco C, Larsen AV, et al. Molecular origins of defects in organohalide perovskites and their influence on charge carrier dynamics. J Phys Chem C, 2016, 120: 12392–12402CrossRefGoogle Scholar
  70. 70.
    Yoon SJ, Stamplecoskie KG, Kamat PV. How lead halide complex chemistry dictates the composition of mixed halide perovskites. J Phys Chem Lett, 2016, 7: 1368–1373CrossRefGoogle Scholar
  71. 71.
    Rahimnejad S, Kovalenko A, Forés SM, et al. Coordination chemistry dictates the structural defects in lead halide perovskites. ChemPhysChem, 2016, 17: 2795–2798CrossRefGoogle Scholar
  72. 72.
    Sharenko A, Mackeen C, Jewell L, et al. Evolution of iodoplumbate complexes in methylammonium lead iodide perovskite precursor solutions. Chem Mater, 2017, 29: 1315–1320CrossRefGoogle Scholar
  73. 73.
    Manser JS, Saidaminov MI, Christians JA, et al. Making and breaking of lead halide perovskites. Acc Chem Res, 2016, 49: 330–338CrossRefGoogle Scholar
  74. 74.
    Saidaminov MI, Abdelhady AL, Maculan G, et al. Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth. Chem Commun, 2015, 51: 17658–17661CrossRefGoogle Scholar
  75. 75.
    Gardner KL, Tait JG, Merckx T, et al. Nonhazardous solvent systems for processing perovskite photovoltaics. Adv Energy Mater, 2016, 6: 1600386CrossRefGoogle Scholar
  76. 76.
    Stevenson J, Sorenson B, Subramaniam VH, et al. Mayer bond order as a metric of complexation effectiveness in lead halide perovskite solutions. Chem Mater, 2017, 29: 2435–2444CrossRefGoogle Scholar
  77. 77.
    Hamill Jr. JC, Schwartz J, Loo YL. Influence of solvent coordination on hybrid organic–inorganic perovskite formation. ACS Energy Lett, 2018, 3: 92–97CrossRefGoogle Scholar
  78. 78.
    Saidaminov MI, Abdelhady AL, Murali B, et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat Commun, 2015, 6: 7586CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zulqarnain Arain
    • 1
    • 3
  • Cheng Liu (刘成)
    • 1
  • Yi Yang (杨熠)
    • 1
  • M. Mateen
    • 1
  • Yinke Ren (任英科)
    • 1
  • Yong Ding (丁勇)
    • 1
  • Xuepeng Liu (刘雪朋)
    • 1
  • Zulfiqar Ali
    • 2
  • Manoj Kumar
    • 3
  • Songyuan Dai (戴松元)
    • 1
  1. 1.Key Laboratory of Novel Thin-Film Solar CellsNorth China Electric Power UniversityBeijingChina
  2. 2.Renewable Energy SchoolNorth China Electric Power UniversityBeijingChina
  3. 3.Energy system Engineering Dept.Sukkur IBA UniversitySukkurPakistan

Personalised recommendations