Advertisement

Controllable dispersion and reunion of liquid metal droplets

  • Sen Chen (陈森)
  • Yujie Ding (丁玉杰)
  • Qinglei Zhang (张晴蕾)
  • Lei Wang (王磊)
  • Jing Liu (刘静)
Articles
  • 58 Downloads

Abstract

Liquid metal (LM) micro-droplets have been widely used in microfluidics, drug-loaded nano-system and micro-nano machine due to its excellent properties. However, there still exist difficulties in succinctly dispersing a bulk of LM into micro-droplets due to the large interfacial tension. Besides, the controllable switching between droplet dispersion and reunion is yet to be realized. Herein, a practical and efficient method for dispersing LM was proposed and the controllable switching between dispersion and reunion of LM droplets was achieved. LM micro-droplets were produced by vibrating the LM immersed in a mixture of N,N-dimethylformamide (DMF) and polyvinyl chloride (PVC). The experimental results show that the size distribution of LM micro-droplets could be tuned by controlling the vibration frequency. More intriguingly, the dispersion and reunion of LM droplets can be switched intelligently through tuning the vibration frequency and amplitude. Furthermore, optical properties of the LM micro-droplet coating were evaluated to display potential applications. A self-driven motion of PVC-coated LM could be achieved by utilizing the produced LM micro-droplets based on the Marangoni effect, which holds promising value for developing future transport tool of LM droplets. The present work suggests an entirely feasible method for dispersing and utilizing LM droplets, which is of great significance for promoting the development of LM micro-droplet science and technology.

Keywords

liquid metal micro-droplet dispersion and reunion self-driven motion optical property 

液态金属液滴的可控分散和融合

摘要

结合了液态金属和微尺度的优点, 液态金属微液滴由于其优异的性能近年来引起了人们的高度关注, 并已被广泛应用于微流体、 载药纳米系统和微纳米机器中. 然而, 由于液态金属巨大的表面张力, 液态金属微纳米液滴的高效简易制备仍然存在困难, 特别是其分散和融合的可控且智能切换仍有待实现. 基于此, 本文提出了一种高效制备液体金属微纳米液滴的新方法, 并实现了液态金属液滴的可控分散和融合. 浸入N,N-二甲基甲酰胺(DMF)和聚氯乙烯(PVC)混合溶液中的液态金属, 通过振动可以产生微纳米级的液态金属微液滴. 实验结果表明, 控制振动的频率可以调节液态金属微液滴的尺寸分布. 更令人惊喜的是, 通过调整振动的频率和振幅, 可以实现液态金属液滴的分散和融合的智能切换, 这在可变形柔性机器等领域有着重要应用. 此外, 文章还对利用这种方法制作的液态金属微液滴涂层的光学性质进行了评估, 以证明其具有更多潜在的应用. 最后, 文章演示了利用本方法所制备的PVC包覆的液态金属微液滴可以在水面实现自驱动运动, 这对未来液态金属微液滴的运输具有重要的意义. 本文提出的这种完全可行的液态金属微液滴分散融合及其实现的方法对于液态金属微液滴科学和技术的发展具有显著的促进作用.

Notes

Acknowledgements

This work was partially supported by the Key Project of National Natural Science Foundation of China (91748206), Dean’s Research Funding and the Frontier Project of the Chinese Academy of Sciences.

Supplementary material

40843_2018_9325_MOESM1_ESM.pdf (187 kb)
Controllable dispersion and reunion of liquid metal droplets

References

  1. 1.
    Zhao X, Xu S, Liu J. Surface tension of liquid metal: role, mechanism and application. Front Energy, 2017, 11: 535–567CrossRefGoogle Scholar
  2. 2.
    Liu T, Sen P, Kim CJ. Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices. J Microelectromech Syst, 2012, 21: 443–450CrossRefGoogle Scholar
  3. 3.
    Jin C, Zhang J, Li X, et al. Injectable 3-D fabrication of medical electronics at the target biological tissues. Sci Rep, 2013, 3: 3442CrossRefGoogle Scholar
  4. 4.
    Ilyas N, Cook A, Tabor CE. Designing liquid metal interfaces to enable next generation flexible and reconfigurable electronics. Adv Mater Interfaces, 2017, 4: 1700141CrossRefGoogle Scholar
  5. 5.
    Chen Y, Zhou T, Li Y, et al. Robust fabrication of nonstick, noncorrosive, conductive graphene-coated liquid metal droplets for droplet-based, floating electrodes. Adv Funct Mater, 2018, 28: 1706277CrossRefGoogle Scholar
  6. 6.
    Lazarus N, Bedair SS, Kierzewski IM. Ultrafine pitch stencil printing of liquid metal alloys. ACS Appl Mater Interfaces, 2017, 9: 1178–1182CrossRefGoogle Scholar
  7. 7.
    Wang Q, Yu Y, Yang J, et al. Fast fabrication of flexible functional circuits based on liquid metal dual-trans printing. Adv Mater, 2016, 27: 7109–7116CrossRefGoogle Scholar
  8. 8.
    Dai D, Zhou Y, Liu J. Liquid metal based thermoelectric generation system for waste heat recovery. Renew Energy, 2011, 36: 3530–3536CrossRefGoogle Scholar
  9. 9.
    Yang XH, Tan SC, He ZZ, et al. Evaluation and optimization of low melting point metal PCM heat sink against ultra-high thermal shock. Appl Thermal Eng, 2017, 119: 34–41CrossRefGoogle Scholar
  10. 10.
    Deng Y, Liu J. A liquid metal cooling system for the thermal management of high power LEDs. Int Commun Heat Mass Transfer, 2010, 37: 788–791CrossRefGoogle Scholar
  11. 11.
    Wang L, Liu J. Liquid phase 3D printing for quickly manufacturing conductive metal objects with low melting point alloy ink. Sci China Technol Sci, 2014, 57: 1721–1728CrossRefGoogle Scholar
  12. 12.
    Yu Y, Liu F, Zhang R, et al. Suspension 3D printing of liquid metal into self-healing hydrogel. Adv Mater Technol, 2017, 2: 1700173CrossRefGoogle Scholar
  13. 13.
    Jeon J, Lee JB, Chung SK, et al. On-demand magnetic manipulation of liquid metal in microfluidic channels for electrical switching applications. Lab Chip, 2016, 17: 128–133CrossRefGoogle Scholar
  14. 14.
    Jung T, Yang S. Highly stable liquid metal-based pressure sensor integrated with a microfluidic channel. Sensors, 2015, 15: 11823–11835CrossRefGoogle Scholar
  15. 15.
    Gao M, Gui L. A handy liquid metal based electroosmotic flow pump. Lab Chip, 2014, 14: 1866–1872CrossRefGoogle Scholar
  16. 16.
    Chechetka SA, Yu Y, Zhen X, et al. Light-driven liquid metal nanotransformers for biomedical theranostics. Nat Commun, 2017, 8: 15432CrossRefGoogle Scholar
  17. 17.
    Zhang J, Guo R, Liu J. Self-propelled liquid metal motors steered by a magnetic or electrical field for drug delivery. J Mater Chem B, 2016, 4: 5349–5357CrossRefGoogle Scholar
  18. 18.
    Ohira H, Ara K. Development of functional LM by dispersing nano-droplets. Chinese J Biol, 2012, 25: 1039–1042Google Scholar
  19. 19.
    Tang SY, Joshipura ID, Lin Y, et al. Liquid-metal microdroplets formed dynamically with electrical control of size and rate. Adv Mater, 2016, 28: 604–609CrossRefGoogle Scholar
  20. 20.
    Fang WQ, He ZZ, Liu J. Electro-hydrodynamic shooting phenomenon of liquid metal stream. Appl Phys Lett, 2014, 105: 134104CrossRefGoogle Scholar
  21. 21.
    Tian L, Gao M, Gui L. A microfluidic chip for liquid metal droplet generation and sorting. Micromachines, 2017, 8: 39CrossRefGoogle Scholar
  22. 22.
    Tang SY, Ayan B, Nama N, et al. On-chip production of size-controllable liquid metal microdroplets using acoustic waves. Small, 2016, 12: 3861–3869CrossRefGoogle Scholar
  23. 23.
    Lu Y, Hu Q, Lin Y, et al. Transformable liquid-metal nanomedicine. Nat Commun, 2015, 6: 10066CrossRefGoogle Scholar
  24. 24.
    Tropmann A, Lass N, Paust N, et al. Pneumatic dispensing of nano-to picoliter droplets of liquid metal with the StarJet method for rapid prototyping of metal microstructures. Microfluid Nanofluid, 2012, 12: 75–84CrossRefGoogle Scholar
  25. 25.
    Yu Y, Wang Q, Yi L, et al. Channelless fabrication for large-scale preparation of room temperature liquid metal droplets. Adv Eng Mater, 2013, 16: 255–262CrossRefGoogle Scholar
  26. 26.
    Hutter T, Bauer WAC, Elliott SR, et al. Formation of spherical and non-spherical eutectic gallium-indium liquid-metal microdroplets in microfluidic channels at room temperature. Adv Funct Mater, 2012, 22: 2624–2631CrossRefGoogle Scholar
  27. 27.
    Candelaria SL, Uchaker E, Cao G. Comparison of surface and bulk nitrogen modification in highly porous carbon for enhanced supercapacitors. Sci China Mater, 2015, 58: 521–533CrossRefGoogle Scholar
  28. 28.
    Xu X, Yi D, Wang Z, et al. Greatly enhanced anticorrosion of Cu by commensurate graphene coating. Adv Mater, 2018, 30: 1702944CrossRefGoogle Scholar
  29. 29.
    Zhang Q, Roach DJ, Geng L, et al. Highly stretchable and conductive fibers enabled by liquid metal dip-coating. Smart Mater Struct, 2018, 27: 035019CrossRefGoogle Scholar
  30. 30.
    Chen Y, Liu Z, Zhu D, et al. Liquid metal droplets with high elasticity, mobility and mechanical robustness. Mater Horiz, 2017, 4: 591–597CrossRefGoogle Scholar
  31. 31.
    Scriven LE, Sternling CV. The marangoni effects. Nature, 1960, 187: 186–188CrossRefGoogle Scholar
  32. 32.
    Tang SY, Khoshmanesh K, Sivan V, et al. Liquid metal enabled pump. Proc Natl Acad Sci USA, 2014, 111: 3304–3309CrossRefGoogle Scholar
  33. 33.
    Wang L, Yuan B, Lu J, et al. Self-propelled and long-time transport motion of PVC particles on a water surface. Adv Mater, 2016, 28: 4065–4070CrossRefGoogle Scholar
  34. 34.
    Keiser L, Bense H, Colinet P, et al. Marangoni bursting: Evaporation-induced emulsification of binary mixtures on a liquid layer. Phys Rev Lett, 2017, 118: 074504CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sen Chen (陈森)
    • 1
    • 2
  • Yujie Ding (丁玉杰)
    • 1
    • 2
  • Qinglei Zhang (张晴蕾)
    • 1
    • 2
  • Lei Wang (王磊)
    • 1
  • Jing Liu (刘静)
    • 1
    • 2
    • 3
  1. 1.Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
  2. 2.School of Future TechnologyUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Department of Biomedical Engineering, School of MedicineTsinghua UniversityBeijingChina

Personalised recommendations