Science China Materials

, Volume 62, Issue 3, pp 423–436 | Cite as

Hierarchical electrospun nanofibers treated by solvent vapor annealing as air filtration mat for high-efficiency PM2.5 capture

  • Xinxin Huang
  • Tifeng JiaoEmail author
  • Qingqing Liu
  • Lexin Zhang
  • Jingxin Zhou
  • Bingbing Li
  • Qiuming PengEmail author


Recently, air pollution has become more serious and started to have a dramatic effect on the health of humans in many large cities. Generally, outdoor personal protection, such as commercial masks, cannot effectively prevent the inhalation of many pollutants. Particulate matter (PM) pollutants are a particularly serious threat to human health. Here we introduce a new efficient air filtration mat that can be used for outdoor protection. The new efficient air filter’s nanocomposite materials were successfully fabricated from poly(ε-caprolactone)/polyethylene oxide (PCL/PEO) using an electrospinning technique and solvent vapor annealing (SVA). SVA treatment endows the wrinkled fiber surface and enhances the PM2.5 capture capacity of protective masks. This nanowrinkled air filtration mat can effectively filter PM2.5 with a removal efficiency of 80.01% under seriously polluted conditions (PM2.5 particle concentration above 225 mgm−3). Our field test in Qinhuangdao indicated that the air filtration mat had a high PM2.5 removal efficiency under thick haze. Compared to commercial masks, the fabricated SVA-treated PCL/PEO air filter mat demonstrated a simpler and ecofriendly preparation process with excellent degradation characteristics, showing wide potential applications with a high filtration efficiency.


electrospinning nanofiber mat solvent vapor annealing air filtration PM2.5 removal 



空气污染特别是颗粒物(PM)污染, 已经威胁到人类的身体健康, 因而引起了全世界的高度关注. 人们在室外可通过口罩进行个人防 护, 然而一般的商业口罩起不到好的防护效果. 本文利用静电纺丝技术和溶剂蒸汽退火(SVA)方法制备了新型高效的聚(ε-己内酯)/聚环氧 乙烷(PCL/PEO)空气过滤纳米纤维. 通过SVA处理, 纤维表面变得褶皱, 增强了对PM2.5的捕获效率. 在重度污染状况(PM2.5颗粒浓度 >225 mg m−3)下, 这种纳米褶皱空气过滤膜的移除效率达80.01%. 秦皇岛雾霾天实地测量表明, 空气过滤膜能高效移除PM2.5. 与商业口 罩相比, 本文经过SVA处理后的PCL/PEO空气过滤膜具有制备方法简单、环境友好且易降解的特性, 在高效过滤膜领域有潜在应用.



This work was supported by the National Natural Science Foundation of China (21473153 and 51771162), Support Program for the Top Young Talents of Hebei Province, China Postdoctoral Science Foundation (2015M580214), Research Program of the College Science & Technology of Hebei Province (ZD2018091), and the Scientific and Technological Research and Development Program of Qinhuangdao City (201701B004).


  1. 1.
    Zhang R, Jing J, Tao J, et al. Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective. Atmos Chem Phys, 2013, 13: 7053–7074CrossRefGoogle Scholar
  2. 2.
    Li K, Jiao T, Xing R, et al. Fabrication of tunable hierarchical MXene@AuNPs nanocomposites constructed by self-reduction reactions with enhanced catalytic performances. Sci China Mater, 2018, 61: 728–736CrossRefGoogle Scholar
  3. 3.
    Cheng C. Interfacial behaviors of PMMA-PEO block copolymers at the air/water interface. Sci China Ser B, 2005, 48: 567–573CrossRefGoogle Scholar
  4. 4.
    Zhao H, Jiao T, Zhang L, et al. Preparation and adsorption capacity evaluation of graphene oxide-chitosan composite hydrogels. Sci China Mater, 2015, 58: 811–818CrossRefGoogle Scholar
  5. 5.
    Sun Z, Liao T, Kou L. Strategies for designing metal oxide nanostructures. Sci China Mater, 2017, 60: 1–24CrossRefGoogle Scholar
  6. 6.
    Liang Q, Li Z, Bai Y, et al. Reduced-sized monolayer carbon nitride nanosheets for highly improved photoresponse for cell imaging and photocatalysis. Sci China Mater, 2017, 60: 109–118CrossRefGoogle Scholar
  7. 7.
    Wang D, Wang R, Liu L, et al. Down-shifting luminescence of water soluble NaYF4:Eu3+@Ag core-shell nanocrystals for fluorescence turn-on detection of glucose. Sci China Mater, 2017, 60: 68–74CrossRefGoogle Scholar
  8. 8.
    Streets DG, Wu Y, Chin M. Two-decadal aerosol trends as a likely explanation of the global dimming/brightening transition. Geophys Res Lett, 2006, 33: 292–306CrossRefGoogle Scholar
  9. 9.
    Harrison RM, Yin J. Particulate matter in the atmosphere: which particle properties are important for its effects on health? Sci Total Environ, 2000, 249: 85–101CrossRefGoogle Scholar
  10. 10.
    Chow JC, Watson JG, Mauderly JL, et al. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manage Association, 2006, 56: 1368–1380CrossRefGoogle Scholar
  11. 11.
    Betha R, Behera SN, Balasubramanian R. 2013 Southeast Asian smoke haze: Fractionation of particulate-bound elements and associated health risk. Environ Sci Technol, 2014, 48: 4327–4335CrossRefGoogle Scholar
  12. 12.
    Wu S, Deng F, Wei H, et al. Association of cardiopulmonary health effects with source-appointed ambient fine particulate in Beijing, China: A combined analysis from the healthy volunteer natural relocation (HVNR) study. Environ Sci Technol, 2014, 48: 3438–3448CrossRefGoogle Scholar
  13. 13.
    Brook RD, Rajagopalan S, Pope CA, et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation, 2010, 121: 2331–2378CrossRefGoogle Scholar
  14. 14.
    Anenberg SC, Horowitz LW, Tong DQ, et al. An estimate of the global burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modeling. Environ Health Perspect, 2010, 118: 1189–1195CrossRefGoogle Scholar
  15. 15.
    Timonen KL, Vanninen E, de Hartog J, et al. Effects of ultrafine and fine particulate and gaseous air pollution on cardiac autonomic control in subjects with coronary artery disease: The ULTRA study. J Expo Sci Environ Epidemiol, 2006, 16: 332–341CrossRefGoogle Scholar
  16. 16.
    Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 1996, 7: 216–223CrossRefGoogle Scholar
  17. 17.
    Si Y, Wang X, Li Y, et al. Optimized colorimetric sensor strip for mercury(II) assay using hierarchical nanostructured conjugated polymers. J Mater Chem A, 2014, 2: 645–652CrossRefGoogle Scholar
  18. 18.
    Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel? Adv Mater, 2004, 16: 1151–1170CrossRefGoogle Scholar
  19. 19.
    Lin J, Ding B, Yang J, et al. Subtle regulation of the micro- and nanostructures of electrospun polystyrene fibers and their application in oil absorption. Nanoscale, 2012, 4: 176–182CrossRefGoogle Scholar
  20. 20.
    Matulevicius J, Kliucininkas L, Prasauskas T, et al. The comparative study of aerosol filtration by electrospun polyamide, polyvinyl acetate, polyacrylonitrile and cellulose acetate nanofiber media. J Aerosol Sci, 2016, 92: 27–37CrossRefGoogle Scholar
  21. 21.
    Li J, Gao F, Liu LQ, et al. Needleless electro-spun nanofibers used for filtration of small particles. Express Polym Lett, 2013, 7: 683–689CrossRefGoogle Scholar
  22. 22.
    Kim HJ, Pant HR, Choi NJ, et al. Composite electrospun fly ash/polyurethane fibers for absorption of volatile organic compounds from air. Chem Eng J, 2013, 230: 244–250CrossRefGoogle Scholar
  23. 23.
    Scholten E, Bromberg L, Rutledge GC, et al. Electrospun polyurethane fibers for absorption of volatile organic compounds from air. ACS Appl Mater Interfaces, 2011, 3: 3902–3909CrossRefGoogle Scholar
  24. 24.
    Sambaer W, Zatloukal M, Kimmer D. 3D air filtration modeling for nanofiber based filters in the ultrafine particle size range. Chem Eng Sci, 2012, 82: 299–311CrossRefGoogle Scholar
  25. 25.
    Barhate RS, Loong CK, Ramakrishna S. Preparation and characterization of nanofibrous filtering media. J Membrane Sci, 2006, 283: 209–218CrossRefGoogle Scholar
  26. 26.
    Gibson P, Schreuder-Gibson H, Rivin D. Transport properties of porous membranes based on electrospun nanofibers. Colloids Surfs A-Physicochem Eng Aspects, 2001, 187–188: 469–481CrossRefGoogle Scholar
  27. 27.
    Liu C, Hsu PC, Lee HW, et al. Transparent air filter for highefficiency PM2.5 capture. Nat Commun, 2015, 6: 6205CrossRefGoogle Scholar
  28. 28.
    Wang Z, Zhao C, Pan Z. Porous bead-on-string poly(lactic acid) fibrous membranes for air filtration. J Colloid Interface Sci, 2015, 441: 121–129CrossRefGoogle Scholar
  29. 29.
    Huang ZM, Zhang YZ, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Sci Tech, 2003, 63: 2223–2253CrossRefGoogle Scholar
  30. 30.
    Ramakrishna S, Fujihara K, Teo WE, et al. Electrospun nanofibers: solving global issues. Mater Today, 2006, 9: 40–50CrossRefGoogle Scholar
  31. 31.
    Bhardwaj N, Kundu SC. Electrospinning: A fascinating fiber fabrication technique. Biotech Adv, 2010, 28: 325–347CrossRefGoogle Scholar
  32. 32.
    Kaur S, Sundarrajan S, Rana D, et al. Review: the characterization of electrospun nanofibrous liquid filtration membranes. J Mater Sci, 2014, 49: 6143–6159CrossRefGoogle Scholar
  33. 33.
    Uyar T, Havelund R, Nur Y, et al. Molecular filters based on cyclodextrin functionalized electrospun fibers. J Membrane Sci, 2009, 332: 129–137CrossRefGoogle Scholar
  34. 34.
    Desai K, Kit K, Li J, et al. Nanofibrous chitosan non-wovens for filtration applications. Polymer, 2009, 50: 3661–3669CrossRefGoogle Scholar
  35. 35.
    Kadam VV, Wang L, Padhye R. Electrospun nanofibre materials to filter air pollutants–A review. J Industrial Textiles, 2018, 47: 2253–2280CrossRefGoogle Scholar
  36. 36.
    Wang N, Zhu Z, Sheng J, et al. Superamphiphobic nanofibrous membranes for effective filtration of fine particles. J Colloid Interface Sci, 2014, 428: 41–48CrossRefGoogle Scholar
  37. 37.
    Wang N, Raza A, Si Y, et al. Tortuously structured polyvinyl chloride/polyurethane fibrous membranes for high-efficiency fine particulate filtration. J Colloid Interface Sci, 2013, 398: 240–246CrossRefGoogle Scholar
  38. 38.
    Kayaci F, Uyar T. Electrospun polyester/cyclodextrin nanofibers for entrapment of volatile organic compounds. Polym Eng Sci, 2014, 54: 2970–2978CrossRefGoogle Scholar
  39. 39.
    Vanangamudi A, Hamzah S, Singh G. Synthesis of hybrid hydrophobic composite air filtration membranes for antibacterial activity and chemical detoxification with high particulate filtration efficiency (PFE). Chem Eng J, 2015, 260: 801–808CrossRefGoogle Scholar
  40. 40.
    Casper CL, Stephens JS, Tassi NG, et al. Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules, 2004, 37: 573–578CrossRefGoogle Scholar
  41. 41.
    Lee KH, Kim HY, Bang HJ, et al. The change of bead morphology formed on electrospun polystyrene fibers. Polymer, 2003, 44: 4029–4034CrossRefGoogle Scholar
  42. 42.
    Xu X, Wang H, Jiang L, et al. Comparison between cellulose nanocrystal and cellulose nanofibril reinforced poly(ethylene oxide) nanofibers and their novel shish-kebab-like crystalline structures. Macromolecules, 2014, 47: 3409–3416CrossRefGoogle Scholar
  43. 43.
    Wang B, Li B, Xiong J, et al. Hierarchically ordered polymer nanofibers via electrospinning and controlled polymer crystallization. Macromolecules, 2008, 41: 9516–9521CrossRefGoogle Scholar
  44. 44.
    Chen X, Wang W, Cheng S, et al. Mimicking bone nanostructure by combining block copolymer self-assembly and 1D crystal nucleation. ACS Nano, 2013, 7: 8251–8257CrossRefGoogle Scholar
  45. 45.
    Liu J, Bauer AJP, Li B. Solvent vapor annealing: an efficient approach for inscribing secondary nanostructures onto electrospun fibers. Macromol Rapid Commun, 2014, 35: 1503–1508CrossRefGoogle Scholar
  46. 46.
    Wang L, Pai CL, Boyce MC, et al. Wrinkled surface topographies of electrospun polymer fibers. Appl Phys Lett, 2009, 94: 151916CrossRefGoogle Scholar
  47. 47.
    Bonino CA, Efimenko K, Jeong SI, et al. Three-dimensional electrospun alginate nanofiber mats via tailored charge repulsions. Small, 2012, 8: 1928–1936CrossRefGoogle Scholar
  48. 48.
    Lin J, Cai Y, Wang X, et al. Fabrication of biomimetic superhydrophobic surfaces inspired by lotus leaf and silver ragwort leaf. Nanoscale, 2011, 3: 1258–1262CrossRefGoogle Scholar
  49. 49.
    Huang XF, Yun H, Gong ZH, et al. Source apportionment and secondary organic aerosol estimation of PM2.5 in an urban atmosphere in China. Sci China Earth Sci, 2014, 57: 1352–1362CrossRefGoogle Scholar
  50. 50.
    Lim CT, Tan EPS, Ng SY. Effects of crystalline morphology on the tensile properties of electrospun polymer nanofibers. Appl Phys Lett, 2008, 92: 141908CrossRefGoogle Scholar
  51. 51.
    Yian Chew S, Hufnagel TC, Teck Lim C, et al. Mechanical properties of single electrospun drug-encapsulated nanofibres. Nanotechnology, 2006, 17: 3880–3891CrossRefGoogle Scholar
  52. 52.
    Wong SC, Baji A, Leng S. Effect of fiber diameter on tensile properties of electrospun poly(-caprolactone). Polymer, 2008, 49: 4713–4722CrossRefGoogle Scholar
  53. 53.
    Pitt CG, Chasalow FI, Hibionada YM, et al. Aliphatic polyesters. I. The degradation of poly(ε-caprolactone) in vivo. J Appl Polym Sci, 1981, 26: 3779–3787Google Scholar
  54. 54.
    Zhang Y, Mu Y, Meng F, et al. The pollution levels of BTEX and carbonyls under haze and non-haze days in Beijing, China. Sci Total Environ, 2014, 490: 391–396CrossRefGoogle Scholar
  55. 55.
    Huang RJ, Zhang Y, Bozzetti C, et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 2014, 514: 218–222CrossRefGoogle Scholar
  56. 56.
    Hou C, Jiao T, Xing R, et al. Preparation of TiO2 nanoparticles modified electrospun nanocomposite membranes toward efficient dye degradation for wastewater treatment. J Taiwan Institute Chem Engineers, 2017, 78: 118–126CrossRefGoogle Scholar
  57. 57.
    Bauer AJP, Grim ZB, Li B. Hierarchical polymer blend fibers of high structural regularity prepared by facile solvent vapor annealing treatment. Macromol Mater Eng, 2018, 303: 1700489CrossRefGoogle Scholar
  58. 58.
    Sepe A, Zhang J, Perlich J, et al. Toward an equilibrium structure in lamellar diblock copolymer thin films using solvent vapor annealing–An in-situ time-resolved GISAXS study. Eur Polymer J, 2016, 81: 607–620CrossRefGoogle Scholar
  59. 59.
    Sinturel C, Vayer M, Morris M, et al. Solvent vapor annealing of block polymer thin films. Macromolecules, 2013, 46: 5399–5415CrossRefGoogle Scholar
  60. 60.
    Chen L, Zhao K, Chi S, et al. Improving fiber alignment by increasing the planar conformation of isoindigo-based conjugated polymers. Mater Chem Front, 2017, 1: 286–293CrossRefGoogle Scholar
  61. 61.
    Bauer AJP, Liu J, Windsor LJ, et al. Current development of collagen- based biomaterials for tissue repair and regeneration. Soft Mater, 2014, 12: 359–370CrossRefGoogle Scholar
  62. 62.
    Gan Z, Jiang B, Zhang J. Poly(ε-caprolactone)/poly(ethylene oxide) diblock copolymer. I. Isothermal crystallization and melting behavior. J Appl Polym Sci, 1996, 59: 961–967Google Scholar
  63. 63.
    Zhou C, Chu R, Wu R, et al. Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromolecules, 2011, 12: 2617–2625CrossRefGoogle Scholar
  64. 64.
    Hu C, Cui W. Hierarchical structure of electrospun composite fibers for long-term controlled drug release carriers. Adv Healthcare Mater, 2015, 1: 809–814CrossRefGoogle Scholar
  65. 65.
    Lin J, Tian F, Shang Y, et al. Facile control of intra-fiber porosity and inter-fiber voids in electrospun fibers for selective adsorption. Nanoscale, 2012, 4: 5316–5320CrossRefGoogle Scholar
  66. 66.
    Lai C, Guo Q, Wu XF, et al. Growth of carbon nanostructures on carbonized electrospun nanofibers with palladium nanoparticles. Nanotechnology, 2008, 19: 195303CrossRefGoogle Scholar
  67. 67.
    Lu P, Xia Y. Maneuvering the internal porosity and surface morphology of electrospun polystyrene yarns by controlling the solvent and relative humidity. Langmuir, 2013, 29: 7070–7078CrossRefGoogle Scholar
  68. 68.
    Guo R, Jiao T, Li R, et al. Sandwiched Fe3O4/carboxylate graphene oxide nanostructures constructed by layer-by-layer assembly for highly efficient and magnetically recyclable dye removal. ACS Sustain Chem Eng, 2018, 6: 1279–1288CrossRefGoogle Scholar
  69. 69.
    Liu Y, Hou C, Jiao T, et al. Self-assembled AgNP-containing nanocomposites constructed by electrospinning as efficient dye photocatalyst materials for wastewater treatment. Nanomaterials, 2018, 8: 35CrossRefGoogle Scholar
  70. 70.
    Zhou J, Liu Y, Jiao T, et al. Preparation and enhanced structural integrity of electrospun poly(ε-caprolactone)-based fibers by freezing amorphous chains through thiol-ene click reaction. Colloids Surfs A-Physicochem Eng Aspects, 2018, 538: 7–13CrossRefGoogle Scholar
  71. 71.
    Song J, Xing R, Jiao T, et al. Crystalline dipeptide nanobelts based on solid–solid phase transformation self-assembly and their polarization imaging of cells. ACS Appl Mater Interfaces, 2018, 10: 2368–2376CrossRefGoogle Scholar
  72. 72.
    Huo S, Duan P, Jiao T, et al. Self-assembled luminescent quantum dots to generate full-color and white circularly polarized light. Angew Chem Int Ed, 2017, 56: 12174–12178CrossRefGoogle Scholar
  73. 73.
    Zhou J, Gao F, Jiao T, et al. Selective Cu(II) ion removal from wastewater via surface charged self-assembled polystyrene-Schiff base nanocomposites. Colloids Surfs A-Physicochem Eng Aspects, 2018, 545: 60–67CrossRefGoogle Scholar
  74. 74.
    Luo X, Ma K, Jiao T, et al. Graphene oxide-polymer composite langmuir films constructed by interfacial thiol-ene photopolymerization. Nanoscale Res Lett, 2017, 12: 99CrossRefGoogle Scholar
  75. 75.
    Sun S, Jiao T, Xing R, et al. Preparation of MoS2-based polydopamine- modified core-shell nanocomposites with elevated adsorption performances. RSC Adv, 2018, 8: 21644–21650CrossRefGoogle Scholar
  76. 76.
    Li D, Wang Y, Xia Y. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett, 2003, 3: 1167–1171CrossRefGoogle Scholar
  77. 77.
    Guibo Y, Qing Z, Yahong Z, et al. The electrospun polyamide 6 nanofiber membranes used as high efficiency filter materials: Filtration potential, thermal treatment, and their continuous production. J Appl Polym Sci, 2013, 128: 1061–1069CrossRefGoogle Scholar
  78. 78.
    Wu H, Kong D, Ruan Z, et al. A transparent electrode based on a metal nanotrough network. Nat Nanotech, 2013, 8: 421–425CrossRefGoogle Scholar
  79. 79.
    Zhang S, Liu H, Zuo F, et al. A controlled design of ripple-like polyamide-6 nanofiber/nets membrane for high-efficiency air filter. Small, 2017, 13: 1603151CrossRefGoogle Scholar
  80. 80.
    Vitchuli N, Shi Q, Nowak J, et al. Electrospun ultrathin nylon fibers for protective applications. J Appl Polym Sci, 2010, 116: 2181–2187Google Scholar
  81. 81.
    Wang N, Yang Y, Al-Deyab SS, et al. Ultra-light 3D nanofibre-nets binary structured nylon 6–polyacrylonitrile membranes for efficient filtration of fine particulate matter. J Mater Chem A, 2015, 3: 23946–23954CrossRefGoogle Scholar
  82. 82.
    Wang N, Si Y, Wang N, et al. Multilevel structured polyacrylonitrile/silica nanofibrous membranes for high-performance air filtration. Separation Purification Tech, 2014, 126: 44–51CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xinxin Huang
    • 1
    • 2
  • Tifeng Jiao
    • 1
    • 2
    Email author
  • Qingqing Liu
    • 2
  • Lexin Zhang
    • 2
  • Jingxin Zhou
    • 2
  • Bingbing Li
    • 3
  • Qiuming Peng
    • 1
    Email author
  1. 1.State Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdaoChina
  2. 2.Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical EngineeringYanshan UniversityQinhuangdaoChina
  3. 3.Department of Chemistry, Science of Advanced Materials Doctoral ProgramCentral Michigan UniversityMount PleasantUSA

Personalised recommendations