Advertisement

Science China Materials

, Volume 62, Issue 2, pp 154–160 | Cite as

“Softness” as the structural origin of plasticity in disordered solids: a quantitative insight from machine learning

  • Xiaodi Liu (刘晓俤)
  • Fucheng Li (李福成)
  • Yong Yang (杨勇)Email author
Perspectives
  • 103 Downloads

以“软度”衡量非晶态固体塑性的结构起源: 一种基于机器学习的定量理解

摘要

非晶态固体没有长程的平移对称性, 因而缺少像晶体中那样具有明确定义的缺陷及其运动来解释塑性的产生. 长期以来, 人们推测非晶态固体的塑性可能起源于物理意义上的局部软区. 与此相比, 在Cubuk等人最近发表在《科学》杂志上的论文中, 作者基于机器学习技术定义了一个微观结构量“软度”, 并提出可以通过“软度”来衡量多种不同非晶态固体(分子玻璃、 胶体玻璃、 金属玻璃等)的塑性的结构起源. 尽管基于机器学习而得到的“软度”的物理意义仍值得进一步研究, 但是由此得到的“软度”区域确实显示出与局部重排区域非常好的相关性. 这个发现为探究多种非晶态固体塑性的结构起源提供了一个定量的理解.

Notes

Acknowledgements

Yang Y acknowledges the research funding from Research Grant Council (RGC) of Hong Kong with the grant number CityU 11207215 and CityU11209317.

References

  1. 1.
    Schuh C, Hufnagel T, Ramamurty U. Mechanical behavior of amorphous alloys. Acta Mater, 2007, 55: 4067–4109CrossRefGoogle Scholar
  2. 2.
    Telford M. The case for bulk metallic glass. Mater Today, 2004, 7: 36–43CrossRefGoogle Scholar
  3. 3.
    Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall, 1977, 25: 407–415CrossRefGoogle Scholar
  4. 4.
    Argon AS. Plastic deformation in metallic glasses. Acta Metall, 1979, 27: 47–58CrossRefGoogle Scholar
  5. 5.
    Falk ML, Langer JS. Dynamics of viscoplastic deformation in amorphous solids. Phys Rev E, 1998, 57: 7192–7205CrossRefGoogle Scholar
  6. 6.
    Lu Z, Jiao W, Wang WH, et al. Flow unit perspective on room temperature homogeneous plastic deformation in metallic glasses. Phys Rev Lett, 2014, 113: 045501CrossRefGoogle Scholar
  7. 7.
    Cubuk ED, Ivancic RJS, Schoenholz SS, et al. Structure-property relationships from universal signatures of plasticity in disordered solids. Science, 2017, 358: 1033–1037CrossRefGoogle Scholar
  8. 8.
    Suykens JAK, Vandewalle J. Least squares support vector machine classifiers. Neural Proc Lett, 1999, 9: 293–300CrossRefGoogle Scholar
  9. 9.
    Cohen MH, Turnbull D. Molecular transport in liquids and glasses. J Chem Phys, 1959, 31: 1164–1169CrossRefGoogle Scholar
  10. 10.
    Argon AS, Kuo HY. Plastic flow in a disordered bubble raft (an analog of a metallic glass). Mater Sci Eng, 1979, 39: 101–109CrossRefGoogle Scholar
  11. 11.
    Langer J. Shear-transformation-zone theory of deformation in metallic glasses. Scripta Mater, 2006, 54: 375–379CrossRefGoogle Scholar
  12. 12.
    Xia X, Wolynes PG. Fragilities of liquids predicted from the random first order transition theory of glasses. Proc Natl Acad Sci USA, 2000, 97: 2990–2994CrossRefGoogle Scholar
  13. 13.
    Ye JC, Lu J, Liu CT, et al. Atomistic free-volume zones and inelastic deformation of metallic glasses. Nat Mater, 2010, 9: 619–623CrossRefGoogle Scholar
  14. 14.
    Liu ZY, Yang Y. A mean-field model for anelastic deformation in metallic-glasses. Intermetallics, 2012, 26: 86–90CrossRefGoogle Scholar
  15. 15.
    Ding J, Patinet S, Falk ML, et al. Soft spots and their structural signature in a metallic glass. Proc Natl Acad Sci USA, 2014, 111: 14052–14056CrossRefGoogle Scholar
  16. 16.
    Wang Z, Sun BA, Bai HY, et al. Evolution of hidden localized flow during glass-to-liquid transition in metallic glass. Nat Commun, 2014, 5: 5823CrossRefGoogle Scholar
  17. 17.
    Liu YH, Wang D, Nakajima K, et al. Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy. Phys Rev Lett, 2011, 106: 125504CrossRefGoogle Scholar
  18. 18.
    Hu YC, Guan PF, Li MZ, et al. Unveiling atomic-scale features of inherent heterogeneity in metallic glass by molecular dynamics simulations. Phys Rev B, 2016, 93: 214202CrossRefGoogle Scholar
  19. 19.
    Huo LS, Zeng JF, Wang WH, et al. The dependence of shear modulus on dynamic relaxation and evolution of local structural heterogeneity in a metallic glass. Acta Mater, 2013, 61: 4329–4338CrossRefGoogle Scholar
  20. 20.
    Fan C, Liaw PK, Haas V, et al. Structures and mechanical behaviors of Zr55Cu35Al10 bulk amorphous alloys at ambient and cryogenic temperatures. Phys Rev B, 2006, 74: 014205CrossRefGoogle Scholar
  21. 21.
    Frenkel J. Zur Theorie der Elastizitätsgrenze und der Festigkeit kristallinischer Körper. Zeitschrift für Physik, 1926, 37: 572–609CrossRefGoogle Scholar
  22. 22.
    Johnson WL, Samwer K. A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence. Phys Rev Lett, 2005, 95: 195501CrossRefGoogle Scholar
  23. 23.
    Qu RT, Liu ZQ, Wang RF, et al. Yield strength and yield strain of metallic glasses and their correlations with glass transition temperature. J Alloys Compd, 2015, 637: 44–54CrossRefGoogle Scholar
  24. 24.
    Egami T, Poon SJ, Zhang Z, et al. Glass transition in metallic glasses: A microscopic model of topological fluctuations in the bonding network. Phys Rev B, 2007, 76: 024203CrossRefGoogle Scholar
  25. 25.
    Egami T. Atomic level stresses. Prog Mater Sci, 2011, 56: 637–653CrossRefGoogle Scholar
  26. 26.
    Guan P, Chen M, Egami T. Stress-temperature scaling for steadystate flow in metallic glasses. Phys Rev Lett, 2010, 104: 205701CrossRefGoogle Scholar
  27. 27.
    Wagner H, Bedorf D, Küchemann S, et al. Local elastic properties of a metallic glass. Nat Mater, 2011, 10: 439–442CrossRefGoogle Scholar
  28. 28.
    Li FC, Wang S, He QF, et al. The stochastic transition from size dependent to size independent yield strength in metallic glasses. J Mech Phys Solids, 2017, 109: 200–216CrossRefGoogle Scholar
  29. 29.
    Wang S, Ye YF, Wang Q, et al. The breakdown of strength size scaling in spherical nanoindentation and microcompression of metallic glasses. Scripta Mater, 2017, 130: 283–287CrossRefGoogle Scholar
  30. 30.
    Wang CC, Ding J, Cheng YQ, et al. Sample size matters for Al88Fe7Gd5 metallic glass: Smaller is stronger. Acta Mater, 2012, 60: 5370–5379CrossRefGoogle Scholar
  31. 31.
    Schuster BE, Wei Q, Ervin MH, et al. Bulk and microscale compressive properties of a Pd-based metallic glass. Scripta Mater, 2007, 57: 517–520CrossRefGoogle Scholar
  32. 32.
    Liontas R, Jafary-Zadeh M, Zeng Q, et al. Substantial tensile ductility in sputtered Zr-Ni-Al nano-sized metallic glass. Acta Mater, 2016, 118: 270–285CrossRefGoogle Scholar
  33. 33.
    Jang D, Gross CT, Greer JR. Effects of size on the strength and deformation mechanism in Zr-based metallic glasses. Int J Plasticity, 2011, 27: 858–867CrossRefGoogle Scholar
  34. 34.
    Bharathula A, Flores KM. Variability in the yield strength of a metallic glass at micron and submicron length scales. Acta Mater, 2011, 59: 7199–7205CrossRefGoogle Scholar
  35. 35.
    Bian XL, Wang G, Chen HC, et al. Manipulation of free volumes in a metallic glass through Xe-ion irradiation. Acta Mater, 2016, 106: 66–77CrossRefGoogle Scholar
  36. 36.
    Baumer RE, Demkowicz MJ. Radiation response of amorphous metal alloys: Subcascades, thermal spikes and super-quenched zones. Acta Mater, 2015, 83: 419–430CrossRefGoogle Scholar
  37. 37.
    Magagnosc DJ, Ehrbar R, Kumar G, et al. Tunable tensile ductility in metallic glasses. Sci Rep, 2013, 3: 1096CrossRefGoogle Scholar
  38. 38.
    Magagnosc DJ, Kumar G, Schroers J, et al. Effect of ion irradiation on tensile ductility, strength and fictive temperature in metallic glass nanowires. Acta Mater, 2014, 74: 165–182CrossRefGoogle Scholar
  39. 39.
    Yu HB, Luo Y, Samwer K. Ultrastable metallic glass. Adv Mater, 2013, 25: 5904–5908CrossRefGoogle Scholar
  40. 40.
    Magagnosc DJ, Feng G, Yu L, et al. Isochemical control over structural state and mechanical properties in Pd-based metallic glass by sputter deposition at elevated temperatures. APL Mater, 2016, 4: 086104CrossRefGoogle Scholar
  41. 41.
    Chen LY, Fu ZD, Zhang GQ, et al. New class of plastic bulk metallic glass. Phys Rev Lett, 2008, 100: 075501CrossRefGoogle Scholar
  42. 42.
    Kim KB, Das J, Venkataraman S, et al. Work hardening ability of ductile Ti45Cu40Ni7.5Zr5Sn2.5 and Cu47.5Zr47.5Al5 bulk metallic glasses. Appl Phys Lett, 2006, 89: 071908CrossRefGoogle Scholar
  43. 43.
    Greer JR, Oliver WC, Nix WD. Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater, 2005, 53: 1821–1830CrossRefGoogle Scholar
  44. 44.
    Gao Y, Bei H. Strength statistics of single crystals and metallic glasses under small stressed volumes. Prog Mater Sci, 2016, 82: 118–150CrossRefGoogle Scholar
  45. 45.
    Greer JR, De Hosson JTM. Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog Mater Sci, 2011, 56: 654–724CrossRefGoogle Scholar
  46. 46.
    Jang D, Greer JR. Transition from a strong-yet-brittle to a stronger- and-ductile state by size reduction of metallic glasses. Nat Mater, 2010, 9: 215–219CrossRefGoogle Scholar
  47. 47.
    Bharathula A, Lee SW, Wright WJ, et al. Compression testing of metallic glass at small length scales: Effects on deformation mode and stability. Acta Mater, 2010, 58: 5789–5796CrossRefGoogle Scholar
  48. 48.
    Chen CQ, Pei YT, De Hosson JTM. Effects of size on the mechanical response of metallic glasses investigated through in situ TEM bending and compression experiments. Acta Mater, 2010, 58: 189–200CrossRefGoogle Scholar
  49. 49.
    Kuzmin OV, Pei YT, Chen CQ, et al. Intrinsic and extrinsic size effects in the deformation of metallic glass nanopillars. Acta Mater, 2012, 60: 889–898CrossRefGoogle Scholar
  50. 50.
    Ye JC, Lu J, Yang Y, et al. Extraction of bulk metallic-glass yield strengths using tapered micropillars in micro-compression experiments. Intermetallics, 2010, 18: 385–393CrossRefGoogle Scholar
  51. 51.
    Wang WH. The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog Mater Sci, 2012, 57: 487–656CrossRefGoogle Scholar
  52. 52.
    Dubach A, Raghavan R, Loffler J, et al. Micropillar compression studies on a bulk metallic glass in different structural states. Scripta Mater, 2009, 60: 567–570CrossRefGoogle Scholar
  53. 53.
    Lai YH, Lee CJ, Cheng YT, et al. Bulk and microscale compressive behavior of a Zr-based metallic glass. Scripta Mater, 2008, 58: 890–893CrossRefGoogle Scholar
  54. 54.
    Lee CJ, Huang JC, Nieh TG. Sample size effect and microcompression of Mg65Cu25Gd10 metallic glass. Appl Phys Lett, 2007, 91: 161913CrossRefGoogle Scholar
  55. 55.
    Schuster BE, Wei Q, Hufnagel TC, et al. Size-independent strength and deformation mode in compression of a Pd-based metallic glass. Acta Mater, 2008, 56: 5091–5100CrossRefGoogle Scholar
  56. 56.
    Volkert CA, Donohue A, Spaepen F. Effect of sample size on deformation in amorphous metals. J Appl Phys, 2008, 103: 083539CrossRefGoogle Scholar
  57. 57.
    Zhou X, Zhou H, Li X, et al. Size effects on tensile and compressive strengths in metallic glass nanowires. J Mech Phys Solids, 2015, 84: 130–144CrossRefGoogle Scholar
  58. 58.
    Şopu D, Foroughi A, Stoica M, et al. Brittle-to-ductile transition in metallic glass nanowires. Nano Lett, 2016, 16: 4467–4471CrossRefGoogle Scholar
  59. 59.
    Delogu F. Molecular dynamics study of size effects in the compression of metallic glass nanowires. Phys Rev B, 2009, 79: 184109CrossRefGoogle Scholar
  60. 60.
    Zhao P, Li J, Wang Y. Extended defects, ideal strength and actual strengths of finite-sized metallic glasses. Acta Mater, 2014, 73: 149–166CrossRefGoogle Scholar
  61. 61.
    Chen DZ, Jang D, Guan KM, et al. Nanometallic glasses: size reduction brings ductility, surface state drives its extent. Nano Lett, 2013, 13: 4462–4468CrossRefGoogle Scholar
  62. 62.
    Uchic MD, Dimiduk DM, Florando JN, et al. Sample dimensions influence strength and crystal plasticity. Science, 2004, 305: 986–989CrossRefGoogle Scholar
  63. 63.
    Dimiduk DM, Uchic MD, Parthasarathy TA. Size-affected singleslip behavior of pure nickel microcrystals. Acta Mater, 2005, 53: 4065–4077CrossRefGoogle Scholar
  64. 64.
    Volkert CA, Lilleodden ET. Size effects in the deformation of submicron Au columns. Philos Mag, 2006, 86: 5567–5579CrossRefGoogle Scholar
  65. 65.
    Brinckmann S, Kim JY, Greer JR. Fundamental differences in mechanical behavior between two types of crystals at the nanoscale. Phys Rev Lett, 2008, 100: 155502CrossRefGoogle Scholar
  66. 66.
    Ng KS, Ngan AHW. Stochastic theory for jerky deformation in small crystal volumes with pre-existing dislocations. Philos Mag, 2008, 88: 677–688CrossRefGoogle Scholar
  67. 67.
    Jennings AT, Burek MJ, Greer JR. Microstructure versus size: mechanical properties of electroplated single crystalline Cu nanopillars. Phys Rev Lett, 2010, 104: 135503CrossRefGoogle Scholar
  68. 68.
    Han SM, Bozorg-Grayeli T, Groves JR, et al. Size effects on strength and plasticity of vanadium nanopillars. Scripta Mater, 2010, 63: 1153–1156CrossRefGoogle Scholar
  69. 69.
    Kiener D, Minor AM. Source truncation and exhaustion: insights from quantitative in situ TEM tensile testing. Nano Lett, 2011, 11: 3816–3820CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaodi Liu (刘晓俤)
    • 1
  • Fucheng Li (李福成)
    • 1
  • Yong Yang (杨勇)
    • 1
    • 2
    Email author
  1. 1.Department of Mechanical EngineeringCity University of Hong KongKowloon, Hong KongChina
  2. 2.Centre for Advanced Structural MaterialsCity University of Hong KongKowloon, Hong KongChina

Personalised recommendations