Science China Materials

, Volume 62, Issue 1, pp 115–121 | Cite as

A simple electrochemical method for conversion of Pt wires to Pt concave icosahedra and nanocubes on carbon paper for electrocatalytic hydrogen evolution

  • Zhimin Luo (罗志敏)
  • Chaoliang Tan (谭超良)
  • Zhuangchai Lai (赖壮钗)
  • Xiao Zhang (张晓)
  • Junze Chen (陈君泽)
  • Ye Chen (陈也)
  • Bo Chen (陈博)
  • Yue Gong (拱越)
  • Zhicheng Zhang (张志成)
  • Xuejun Wu (吴雪军)
  • Bing Li (李冰)
  • Yun Zong (宗昀)
  • Lin Gu (谷林)
  • Hua Zhang (张华)


In the controlled synthesis of noble metal nanostructures using wet-chemical methods, normally, metal salts/complexes are used as precursors, and surfactants/ ligands are used to tune/stabilize the morphology of nanostructures. Here, we develop a facile electrochemical method to directly convert Pt wires to Pt concave icosahedra and nanocubes on carbon paper through the linear sweep voltammetry in a classic three-electrode electrochemical cell. The Pt wire, carbon paper and Ag/AgCl (3 mol L−1 KCl) are used as the counter, working and reference electrodes, respectively. Impressively, the formed Pt nanostructures exhibit better electrocatalytic activity towards the hydrogen evolution compared to the commercial Pt/C catalyst. This work provides a simple and effective way for direct conversion of Pt wires into well-defined Pt nanocrystals with clean surface. We believe it can also be used for preparation of other metal nanocrystals, such as Au and Pd, from their bulk materials, which could exhibit various promising applications.


noble metals electrochemical conversion concave nanostructures electrocatalysis hydrogen evolution 



湿化学法可控合成贵金属纳米结构通常需要金属盐或金属配合物作为前体, 并利用表面活性剂和配体来调节和稳定纳米结构的形 貌. 本文通过一种简单的电化学方法(线性扫描伏安法), 在三电极体系中直接把铂线转化到碳布表面形成铂二十面体和纳米立方体. 在三 电极体系中, 铂线、碳布和Ag/AgCl(3 mol L−1 KCl)分别作为对电极、工作电极和参比电极. 与商业Pt/C催化剂相比, 制备的铂二十面体和 纳米立方体展现出优越的电催化活性. 该方法简单、有效, 可拓展到其他贵金属纳米结构的合成和应用研究. 如通过这种电化学方法直接 将Au、Pd等块体材料转化成具有各种潜在应用的Au、Pd等纳米结构.



This work was supported by the Ministry of Education under AcRF Tier 2 (ARC 19/15, No. MOE2014-T2-2-093; MOE2015-T2-2-057; MOE2016-T2-2-103; MOE2017-T2-1-162) and AcRF Tier 1 (2016-T1-001-147; 2016-T1-002-051; 2017-T1-001-150; 2017-T1-002-119), and Nanyang Technological University under Start- Up Grant (M4081296.070.500000) in Singapore. We would like to acknowledge the Facility for Analysis, Characterization, Testing and Simulation, Nanyang Technological University, Singapore, for use of their electron microscopy (and/or X-ray) facilities.

Supplementary material

40843_2018_9315_MOESM1_ESM.pdf (668 kb)
A simple electrochemical method for conversion of Pt wires to Pt concave icosahedra and nanocubes on carbon paper for electrocatalytic hydrogen evolution


  1. 1.
    Joo SH, Park JY, Tsung CK, et al. Thermally stable Pt/mesoporous silica core–shell nanocatalysts for high-temperature reactions. Nat Mater, 2009, 8: 126–131CrossRefGoogle Scholar
  2. 2.
    Li Y, Cox JT, Zhang B. Electrochemical responses and electrocatalysis at single Au nanoparticles. J Am Chem Soc, 2010, 132: 3047–3054CrossRefGoogle Scholar
  3. 3.
    Wang C, Daimon H, Lee Y, et al. Synthesis of monodisperse Pt nanocubes and their enhanced catalysis for oxygen reduction. J Am Chem Soc, 2007, 129: 6974–6975CrossRefGoogle Scholar
  4. 4.
    Xia Y, Yang X. Toward cost-effective and sustainable use of precious metals in heterogeneous catalysts. Acc Chem Res, 2017, 50: 450–454CrossRefGoogle Scholar
  5. 5.
    Xiao L, Zhuang L, Liu Y, et al. Activating Pd by morphology tailoring for oxygen reduction. J Am Chem Soc, 2009, 131: 602–608CrossRefGoogle Scholar
  6. 6.
    Xu C, Wang H, Shen P, et al. Highly ordered Pd nanowire arrays as effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells. Adv Mater, 2007, 19: 4256–4259CrossRefGoogle Scholar
  7. 7.
    Zhu W, Michalsky R, Metin Ö, et al. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J Am Chem Soc, 2013, 135: 16833–16836CrossRefGoogle Scholar
  8. 8.
    Huang X, Li S, Huang Y, et al. Synthesis of hexagonal close-packed gold nanostructures. Nat Commun, 2011, 2: 292CrossRefGoogle Scholar
  9. 9.
    Fan Z, Bosman M, Huang X, et al. Stabilization of 4H hexagonal phase in gold nanoribbons. Nat Commun, 2015, 6: 7684CrossRefGoogle Scholar
  10. 10.
    Fan Z, Huang X, Han Y, et al. Surface modification-induced phase transformation of hexagonal close-packed gold square sheets. Nat Commun, 2015, 6: 6571CrossRefGoogle Scholar
  11. 11.
    Fan Z, Luo Z, Chen Y, et al. Synthesis of 4H/fcc-Au@M (M = Ir, Os, IrOs) core-shell nanoribbons for electrocatalytic oxygen evolution reaction. Small, 2016, 12: 3908–3913CrossRefGoogle Scholar
  12. 12.
    Fan Z, Luo Z, Huang X, et al. Synthesis of 4H/fcc noble multimetallic nanoribbons for electrocatalytic hydrogen evolution re-action. J Am Chem Soc, 2016, 138: 1414–1419CrossRefGoogle Scholar
  13. 13.
    Fan Z, Zhang H. Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials. Chem Soc Rev, 2016, 45: 63–82CrossRefGoogle Scholar
  14. 14.
    Tian N, Zhou ZY, Sun SG, et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electrooxidation activity. Science, 2007, 316: 732–735CrossRefGoogle Scholar
  15. 15.
    Schrinner M, Ballauff M, Talmon Y, et al. Single nanocrystals of platinum prepared by partial dissolution of Au-Pt nanoalloys. Science, 2009, 323: 617–620CrossRefGoogle Scholar
  16. 16.
    Jin M, Zhang H, Xie Z, et al. Palladium concave nanocubes with high-index facets and their enhanced catalytic properties. Angew Chem Int Ed, 2011, 50: 7850–7854CrossRefGoogle Scholar
  17. 17.
    Wei L, Fan YJ, Tian N, et al. Electrochemically shape-controlled synthesis in deep eutectic solvents—a new route to prepare Pt nanocrystals enclosed by high-index facets with high catalytic activity. J Phys Chem C, 2012, 116: 2040–2044CrossRefGoogle Scholar
  18. 18.
    Yu T, Kim DY, Zhang H, et al. Platinum concave nanocubes with high-index facets and their enhanced activity for oxygen reduction reaction. Angew Chem Int Ed, 2011, 50: 2773–2777CrossRefGoogle Scholar
  19. 19.
    Xiao J, Liu S, Tian N, et al. Synthesis of convex hexoctahedral Pt micro/nanocrystals with high-index facets and electrochemistrymediated shape evolution. J Am Chem Soc, 2013, 135: 18754–18757CrossRefGoogle Scholar
  20. 20.
    Zhang Z, Liu Y, Chen B, et al. Submonolayered Ru deposited on ultrathin Pd nanosheets used for enhanced catalytic applications. Adv Mater, 2016, 28: 10282–10286CrossRefGoogle Scholar
  21. 21.
    Zhang Z, Luo Z, Chen B, et al. One-pot synthesis of highly anisotropic five-fold-twinned ptcu nanoframes used as a bifunctional electrocatalyst for oxygen reduction and methanol oxidation. Adv Mater, 2016, 28: 8712–8717CrossRefGoogle Scholar
  22. 22.
    Zhang L, Han L, Liu H, et al. Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media. Angew Chem Int Ed, 2017, 56: 13694–13698CrossRefGoogle Scholar
  23. 23.
    Huang X, Zhao Z, Fan J, et al. Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets. J Am Chem Soc, 2011, 133: 4718–4721CrossRefGoogle Scholar
  24. 24.
    Kim D, Lee YW, Lee SB, et al. Convex polyhedral Au@Pd coreshell nanocrystals with high-index facets. Angew Chem Int Ed, 2012, 51: 159–163CrossRefGoogle Scholar
  25. 25.
    Lim B, Lu X, Jiang M, et al. Facile synthesis of highly faceted multioctahedral Pt nanocrystals through controlled overgrowth. Nano Lett, 2008, 8: 4043–4047CrossRefGoogle Scholar
  26. 26.
    Stamenkovic VR, Fowler B, Mun BS, et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science, 2007, 315: 493–497CrossRefGoogle Scholar
  27. 27.
    Zhang L, Zhang J, Kuang Q, et al. Cu2+-assisted synthesis of hexoctahedral Au–Pd alloy nanocrystals with high-index facets. J Am Chem Soc, 2011, 133: 17114–17117CrossRefGoogle Scholar
  28. 28.
    Li GR, Xu H, Lu XF, et al. Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage. Nanoscale, 2013, 5: 4056–4069CrossRefGoogle Scholar
  29. 29.
    Wang D, Zhou WL, McCaughy BF, et al. Electrodeposition of metallic nanowire thin films using mesoporous silica templates. Adv Mater, 2003, 15: 130–133CrossRefGoogle Scholar
  30. 30.
    Lee W, Scholz R, Nielsch K, et al. A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes. Angew Chem Int Ed, 2005, 44: 6050–6054CrossRefGoogle Scholar
  31. 31.
    Keilbach A, Moses J, Kohn R, et al. Electrodeposition of copper and silver nanowires in hierarchical mesoporous silica/anodic alumina nanostructures. Chem Mater, 2010, 22: 5430–5436CrossRefGoogle Scholar
  32. 32.
    Kanno Y, Suzuki T, Yamauchi Y, et al. Preparation of Au nanowire films by electrodeposition using mesoporous silica films as a template: vital effect of vertically oriented mesopores on a substrate. J Phys Chem C, 2012, 116: 24672–24680CrossRefGoogle Scholar
  33. 33.
    Tian N, Zhou ZY, Sun SG. Electrochemical preparation of Pd nanorods with high-index facets. Chem Commun, 2009, 293: 1502–1504CrossRefGoogle Scholar
  34. 34.
    Zhou ZY, Huang ZZ, Chen DJ, et al. High-Index faceted platinum nanocrystals supported on carbon black as highly efficient catalysts for ethanol electrooxidation. Angew Chem Int Ed, 2010, 49: 411–414CrossRefGoogle Scholar
  35. 35.
    Liu S, Tian N, Xie AY, et al. Electrochemically seed-mediated synthesis of sub-10 nm tetrahexahedral Pt nanocrystals supported on graphene with improved catalytic performance. J Am Chem Soc, 2016, 138: 5753–5756CrossRefGoogle Scholar
  36. 36.
    Yang Y, Jin H, Kim HY, et al. Ternary dendritic nanowires as highly active and stable multifunctional electrocatalysts. Nanoscale, 2016, 8: 15167–15172CrossRefGoogle Scholar
  37. 37.
    Wu J, Qi L, You H, et al. Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. J Am Chem Soc, 2012, 134: 11880–11883CrossRefGoogle Scholar
  38. 38.
    Zhou W, Wu J, Yang H. Highly uniform platinum icosahedra made by hot injection-assisted GRAILS method. Nano Lett, 2013, 13: 2870–2874CrossRefGoogle Scholar
  39. 39.
    Wang X, Choi SI, Roling LT, et al. Palladium–platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction. Nat Commun, 2015, 6: 7594CrossRefGoogle Scholar
  40. 40.
    He DS, He D, Wang J, et al. Ultrathin icosahedral Pt-enriched nanocage with excellent oxygen reduction reaction activity. J Am Chem Soc, 2016, 138: 1494–1497CrossRefGoogle Scholar
  41. 41.
    Wang H, Zhou S, Gilroy KD, et al. Icosahedral nanocrystals of noble metals: Synthesis and applications. Nano Today, 2017, 15: 121–144CrossRefGoogle Scholar
  42. 42.
    Tang Q, Zhang H, Meng Y, et al. Dissolution engineering of platinum alloy counter electrodes in dye-sensitized solar cells. Angew Chem Int Ed, 2015, 54: 11448–11452CrossRefGoogle Scholar
  43. 43.
    Lu CL, Prasad KS, Wu HL, et al. Au nanocube-directed fabrication of Au−Pd core−shell nanocrystals with tetrahexahedral, concave octahedral, and octahedral structures and their electrocatalytic activity. J Am Chem Soc, 2010, 132: 14546–14553CrossRefGoogle Scholar
  44. 44.
    Wang S, Yang G, Yang S. Pt-frame@Ni quasi core–shell concave octahedral PtNi3 bimetallic nanocrystals for electrocatalytic methanol oxidation and hydrogen evolution. J Phys Chem C, 2015, 119: 27938–27945CrossRefGoogle Scholar
  45. 45.
    Zhang H, Jin M, Xia Y. Noble-metal nanocrystals with concave surfaces: synthesis and applications. Angew Chem Int Ed, 2012, 51: 7656–7673CrossRefGoogle Scholar
  46. 46.
    Lv H, Xi Z, Chen Z, et al. A new core/shell NiAu/Au nanoparticle catalyst with pt-like activity for hydrogen evolution reaction. J Am Chem Soc, 2015, 137: 5859–5862CrossRefGoogle Scholar
  47. 47.
    Zhang Z, Hui J, Liu ZC, et al. Glycine-mediated syntheses of Pt concave nanocubes with high-index {hk0} facets and their enhanced electrocatalytic activities. Langmuir, 2012, 28: 14845–14848CrossRefGoogle Scholar
  48. 48.
    Lim B, Jiang M, Camargo PHC, et al. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science, 2009, 324: 1302–1305CrossRefGoogle Scholar
  49. 49.
    Marković NM, Grgur BN, Ross PN. Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutions. J Phys Chem B, 1997, 101: 5405–5413CrossRefGoogle Scholar
  50. 50.
    Bai S, Wang C, Deng M, et al. Surface polarization matters: enhancing the hydrogen-evolution reaction by shrinking Pt shells in Pt-Pd-graphene stack structures. Angew Chem Int Ed, 2014, 53: 12120–12124CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhimin Luo (罗志敏)
    • 1
  • Chaoliang Tan (谭超良)
    • 1
  • Zhuangchai Lai (赖壮钗)
    • 1
  • Xiao Zhang (张晓)
    • 1
  • Junze Chen (陈君泽)
    • 1
  • Ye Chen (陈也)
    • 1
  • Bo Chen (陈博)
    • 1
  • Yue Gong (拱越)
    • 2
  • Zhicheng Zhang (张志成)
    • 1
  • Xuejun Wu (吴雪军)
    • 1
  • Bing Li (李冰)
    • 3
  • Yun Zong (宗昀)
    • 3
  • Lin Gu (谷林)
    • 2
  • Hua Zhang (张华)
    • 1
  1. 1.Center for Programmable Materials, School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Institute of Materials Research and EngineeringA*STAR (Agency for Science, Technology and Research)SingaporeSingapore

Personalised recommendations