Science China Materials

, Volume 62, Issue 3, pp 389–398 | Cite as

Solution-processed n-type Bi2Te3−xSex nanocomposites with enhanced thermoelectric performance via liquid-phase sintering

  • Chaohua Zhang (张朝华)Email author
  • Chunxiao Zhang (张春笑)
  • Hongkuan Ng (黄洪宽)
  • Qihua Xiong (熊启华)Email author


The much slower progress in enhancing the thermoelectric performance of n-type Bi2Te3 than that of p-type Bi2Te3 based materials in the past decade hinders the widespread use in power generation and refrigeration. Here, a facile bottom-up solution-synthesis with spark plasma sintering (SPS) process has been developed to build n-type Bi2Te3−xSex bulk nanocomposites, which substantially improves the power factor and decreases the lattice thermal conductivity by tuning the interface scattering of phonons and electrons. The stoichiometric composition in ternary Bi2Te3−xSex nanocomposites is also tuned to optimize the carrier concentration and lattice thermal conductivity. The optimized bulk nanocomposite Bi2Te2.7Se0.3 exhibits a ZT of 1.1 at ~371 K, which is comparable to the corresponding commercially available ingots. Our results demonstrate the great potential of the solution-processed n-type Bi2Te3−xSex nanocomposites for cost-effective thermoelectric applications.


thermoelectric liquid-phase sintering nanocomposites solution-processed bismuth telluride 



近十多年来Bi2Te3基材料热电性能研究中, n型材料的热电性能提升要比p型慢很多, 这极大限制了Bi2Te3基材料在发电和制冷应用 领域中的广泛推广. 本文介绍了一种简单的“自下而上”的溶液合成方法, 并结合放电等离子体烧结工艺来构建n型Bi2Te3−xSex纳米复合块 体材料. 在化学溶液合成过程中引入过量的碲源, 实现在烧结制备样品的过程中引入液相烧结过程. 这一过程优化了声子和电子在界面的 散射行为, 从而增强了材料的功率因子并降低了晶格热导率. 通过调整Bi2Te3−xSex 纳米复合材料中的化学成分进一步实现了载流子浓度和 晶格热导率的优化. 优化的Bi2Te2.7Se0.3材料在~371K下的ZT值达到了1.1, 与商业化碲化铋材料的ZT值相当. 本研究表明溶液法制备的n型 碲化铋基纳米复合材料在大规模低成本的热电应用领域具有重要前景.



This work was supported by the Natural Science Foundation of SZU (2017003), Shenzhen Science and Technology Research Grant (JCYJ20150324141711684), Singapore National Research Foundation (NRF-RF2009-06) and an Investigator-ship Award (NRFNRFI2015- 03), Ministry of Education (Singapore) via an AcRF Tier2 Grant (MOE2012-T2-2-086). We also thank Dr. Zhong Li and Prof. Khiam Aik Khor for the support on the spark-plasma-sintering experiments.

Supplementary material

40843_2018_9312_MOESM1_ESM.pdf (788 kb)
Supplementary material, approximately 789 KB.


  1. 1.
    Bell LE. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321: 1457–1461CrossRefGoogle Scholar
  2. 2.
    Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater, 2008, 7: 105–114CrossRefGoogle Scholar
  3. 3.
    Ortega S, Ibáñez M, Liu Y, et al. Bottom-up engineering of thermoelectric nanomaterials and devices from solution-processed nanoparticle building blocks. Chem Soc Rev, 2017, 46: 3510–3528CrossRefGoogle Scholar
  4. 4.
    Farooq MU, Butt S, Gao K, et al. Pronounced effect of ZnTe nanoinclusions on thermoelectric properties of Cu2-xSe chalcogenides. Sci China Mater, 2016, 59: 135–143CrossRefGoogle Scholar
  5. 5.
    Zhu T, Liu Y, Fu C, et al. Compromise and synergy in highefficiency thermoelectric materials. Adv Mater, 2017, 29: 1605884CrossRefGoogle Scholar
  6. 6.
    Yang G, Yao Y, Ma D. Structural, electronic, and thermoelectric properties of La2CuBiS5. Sci China Mater, 2017, 60: 151–158CrossRefGoogle Scholar
  7. 7.
    Pei Y, Wang H, Snyder GJ. Band engineering of thermoelectric materials. Adv Mater, 2012, 24: 6125–6135CrossRefGoogle Scholar
  8. 8.
    Ding D, Lu C, Tang Z. Bottom up chalcogenide thermoelectric materials from solution-processed nanostructures. Adv Mater Interfaces, 2017, 4: 1700517CrossRefGoogle Scholar
  9. 9.
    Poudel B, Hao Q, Ma Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320: 634–638CrossRefGoogle Scholar
  10. 10.
    Xie W, He J, Kang HJ, et al. Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi,Sb)2Te3 nanocomposites. Nano Lett, 2010, 10: 3283–3289CrossRefGoogle Scholar
  11. 11.
    Xu Z, Wu H, Zhu T, et al. Attaining high mid-temperature performance in (Bi,Sb)2Te3 thermoelectric materials via synergistic optimization. NPG Asia Mater, 2016, 8: e302CrossRefGoogle Scholar
  12. 12.
    Kim SI, Lee KH, Mun HA, et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science, 2015, 348: 109–114CrossRefGoogle Scholar
  13. 13.
    Liu WS, Zhang Q, Lan Y, et al. Thermoelectric property studies on Cu-doped n-type CuxBi2Te2.7Se0.3 nanocomposites. Adv Energy Mater, 2011, 1: 577–587CrossRefGoogle Scholar
  14. 14.
    Yan X, Poudel B, Ma Y, et al. Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. Nano Lett, 2010, 10: 3373–3378CrossRefGoogle Scholar
  15. 15.
    Hu L, Zhu T, Liu X, et al. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Adv Funct Mater, 2014, 24: 5211–5218CrossRefGoogle Scholar
  16. 16.
    Hu L, Wu H, Zhu T, et al. Tuning multiscale microstructures to enhance thermoelectric performance of n-type bismuth-telluridebased solid solutions. Adv Energy Mater, 2015, 5: 1500411CrossRefGoogle Scholar
  17. 17.
    Tang Z, Hu L, Zhu T, et al. High performance n-type bismuth telluride based alloys for mid-temperature power generation. J Mater Chem C, 2015, 3: 10597–10603CrossRefGoogle Scholar
  18. 18.
    Ao WQ, Sun WA, Li JQ, et al. Hydrothermal synthesis of nanosized AgPb18SbTe20 thermoelectric powders. J Alloys Compd, 2009, 475: L22–L24CrossRefGoogle Scholar
  19. 19.
    Mehta RJ, Zhang Y, Karthik C, et al. A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. Nat Mater, 2012, 11: 233–240CrossRefGoogle Scholar
  20. 20.
    Son JS, Choi MK, Han MK, et al. n-Type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates. Nano Lett, 2012, 12: 640–647CrossRefGoogle Scholar
  21. 21.
    Zhang Y, Day T, Snedaker ML, et al. A mesoporous anisotropic ntype Bi2Te3 monolith with low thermal conductivity as an efficient thermoelectric material. Adv Mater, 2012, 24: 5065–5070CrossRefGoogle Scholar
  22. 22.
    Min Y, Roh JW, Yang H, et al. Surfactant-free scalable synthesis of Bi2Te3 and Bi2Se3 nanoflakes and enhanced thermoelectric properties of their nanocomposites. Adv Mater, 2013, 25: 1425–1429CrossRefGoogle Scholar
  23. 23.
    Hong M, Chasapis TC, Chen ZG, et al. n-Type Bi2Te3–xSex nanoplates with enhanced thermoelectric efficiency driven by widefrequency phonon scatterings and synergistic carrier scatterings. ACS Nano, 2016, 10: 4719–4727CrossRefGoogle Scholar
  24. 24.
    Li S, Xin C, Liu X, et al. 2D hetero-nanosheets to enable ultralow thermal conductivity by all scale phonon scattering for highly thermoelectric performance. Nano Energy, 2016, 30: 780–789CrossRefGoogle Scholar
  25. 25.
    Li S, Fan T, Liu X, et al. Graphene quantum dots embedded in Bi2Te3 nanosheets to enhance thermoelectric performance. ACS Appl Mater Interfaces, 2017, 9: 3677–3685CrossRefGoogle Scholar
  26. 26.
    Min Y, Park G, Kim B, et al. Synthesis of multishell nanoplates by consecutive epitaxial growth of Bi2Se3 and Bi2Te3 nanoplates and enhanced thermoelectric properties. ACS Nano, 2015, 9: 6843–6853CrossRefGoogle Scholar
  27. 27.
    Zhao XB, Ji XH, Zhang YH, et al. Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl Phys Lett, 2005, 86: 062111CrossRefGoogle Scholar
  28. 28.
    Dirmyer MR, Martin J, Nolas GS, et al. Thermal and electrical conductivity of size-tuned bismuth telluride nanoparticles. Small, 2009, 5: 933–937CrossRefGoogle Scholar
  29. 29.
    Fang H, Bahk JH, Feng T, et al. Thermoelectric properties of solution-synthesized n-type Bi2Te3 nanocomposites modulated by Se: An experimental and theoretical study. Nano Res, 2015, 9: 117–127CrossRefGoogle Scholar
  30. 30.
    Scheele M, Oeschler N, Meier K, et al. Synthesis and thermoelectric characterization of Bi2Te3 nanoparticles. Adv Funct Mater, 2009, 19: 3476–3483CrossRefGoogle Scholar
  31. 31.
    German RM, Suri P, Park SJ. Review: liquid phase sintering. J Mater Sci, 2008, 44: 1–39CrossRefGoogle Scholar
  32. 32.
    Zhang C, Ng H, Li Z, et al. Minority carrier blocking to enhance the thermoelectric performance of solution-processed BixSb2–xTe3 nanocomposites via a liquid-phase sintering process. ACS Appl Mater Interfaces, 2017, 9: 12501–12510CrossRefGoogle Scholar
  33. 33.
    Zhang C, de la Mata M, Li Z, et al. Enhanced thermoelectric performance of solution-derived bismuth telluride based nanocomposites via liquid-phase sintering. Nano Energy, 2016, 30: 630–638CrossRefGoogle Scholar
  34. 34.
    Li JQ, Li LF, Song SH, et al. High thermoelectric performance of GeTe–Ag8GeTe6 eutectic composites. J Alloys Compd, 2013, 565: 144–147CrossRefGoogle Scholar
  35. 35.
    Zhang C, Peng Z, Li Z, et al. Controlled growth of bismuth antimony telluride BixSb2-xTe3 nanoplatelets and their bulk thermoelectric nanocomposites. Nano Energy, 2015, 15: 688–696CrossRefGoogle Scholar
  36. 36.
    Soni A, Yanyuan Z, Ligen Y, et al. Enhanced thermoelectric properties of solution grown Bi2Te3–xSex nanoplatelet composites. Nano Lett, 2012, 12: 1203–1209CrossRefGoogle Scholar
  37. 37.
    Lu Z, Tan LP, Zhao X, et al. Aqueous solution synthesis of (Sb, Bi)2 (Te, Se)3 nanocrystals with controllable composition and morphology. J Mater Chem C, 2013, 1: 6271CrossRefGoogle Scholar
  38. 38.
    Fu J, Song S, Zhang X, et al. Bi2Te3 nanoplates and nanoflowers: Synthesized by hydrothermal process and their enhanced ther-moelectric properties. CrystEngComm, 2012, 14: 2159CrossRefGoogle Scholar
  39. 39.
    Kim HS, Gibbs ZM, Tang Y, et al. Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater, 2015, 3: 041506CrossRefGoogle Scholar
  40. 40.
    Puneet P, Podila R, Karakaya M, et al. Preferential scattering by interfacial charged defects for enhanced thermoelectric performance in few-layered n-type Bi2Te3. Sci Rep, 2013, 3: 3212CrossRefGoogle Scholar
  41. 41.
    Pan Y, Li JF. Thermoelectric performance enhancement in n-type Bi2(TeSe)3 alloys owing to nanoscale inhomogeneity combined with a spark plasma-textured microstructure. NPG Asia Mater, 2016, 8: e275CrossRefGoogle Scholar
  42. 42.
    Borup KA, de Boor J, Wang H, et al. Measuring thermoelectric transport properties of materials. Energy Environ Sci, 2015, 8: 423–435CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chaohua Zhang (张朝华)
    • 1
    Email author
  • Chunxiao Zhang (张春笑)
    • 1
  • Hongkuan Ng (黄洪宽)
    • 2
  • Qihua Xiong (熊启华)
    • 2
    Email author
  1. 1.College of Materials Science and Engineering, Shenzhen Key Laboratory of Special Functional MaterialsShenzhen UniversityShenzhenChina
  2. 2.Division of Physics and Applied Physics, School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore

Personalised recommendations