Advertisement

Intrinsically reinforced silks obtained by incorporation of graphene quantum dots into silkworms

  • Lin Ma (马琳)
  • Maxwell Akologo Akurugu
  • Vivian Andoh
  • Haiyan Liu (刘海燕)
  • Jiangchao Song (宋江超)
  • Guohua Wu (武国华)
  • Long Li (李龙)
Articles
  • 35 Downloads

Abstract

Silkworm silks have been widely used in a variety of fields due to their sensuousness, luster and excellent mechanical properties. Researchers have paid special attention in improving the mechanical properties of silks. In this work, Bombyx mori larval silkworms are injected with graphene quantum dots (GQDs) through a vascular injection to enhance mechanical properties of the silkworm silks. The GQDs can be incorporated into the silkworm silk gland easily due to hemolymph circulation and influence the spinning process of silkworm. The breaking strength, elongation at break and toughness modulus of the silks increase by 2.74, 1.33 and 3.62 times, respectively, by injecting per individual with 0.6 μg GQDs. Wide-angle X-ray scattering indicates that the size of β-sheet nanocrystals in GQDs-silks is smaller than that in control-silks. Infrared spectra suggest that GQDs confine the conformation transition of silk fibroin to β-sheet from random coil/α-helix, and the change of the size and content of β-sheet may be the reason for the improvement of the mechanical properties. The toxicity and safety limit of GQDs incorporated into each silkworm is also evaluated, and the results show that the upmost dose of GQDs per silkworm is 30.0 μg. The successful obtainment of reinforced silks by in vivo uptake of GQDs provides a promising route to produce high-strength silks.

Keywords

silkworm silks graphene quantum dots decrease of β-sheets enhanced mechanical properties 

摄入石墨烯量子点的家蚕可直接吐出力学性能增强的蚕丝

摘要

家蚕蚕丝具有细腻、 光鲜以及优良的力学特性, 因而在诸多领域中都有广泛应用. 许多科学家对提高家蚕蚕丝力学性能的研究非常感兴趣. 本工作中, 我们通过血管注射的方式给家蚕幼虫注入了石墨烯量子点(GQDs), 并且得到了力学性能增强的蚕丝. GQDs可通过淋巴循环进入到家蚕的丝腺器官并影响家蚕的纺丝过程. 研究发现, 当家蚕的GQDs摄入量为0.6 μg/头时, 家蚕蚕丝的断裂强度、 断裂伸长率以及韧性模量可分别增强到原来的2.74, 1.33 和3.62倍. 广角X射线散射(WAXS)结果表明GQDs-蚕丝中的β-折叠纳米晶体的尺寸比起空白蚕丝有所降低, 红外光谱结果表明GQDs限制了丝素蛋白中无规则卷曲或者α-螺旋结构向β-折叠结构的构象转变. β-折叠结构的尺寸及含量的变化可能是引起蚕丝力学性能增强的原因所在. 我们还对GQDs的毒性以及单头家蚕摄入GQDs的安全限进行了评估, 结果发现家蚕摄入GQDs的上限为30.0 μg/头. 使家蚕直接摄入GQDs获得力学性能增强的蚕丝的方法为生产高强度蚕丝提供了一种有潜力的途径.

Notes

Acknowledgements

This work was supported by Young Elite Scientist Sponsorship Program by CAST (2015QNRC001) and the Earmarked Fund for Modern Agro-industry Technology Research System.

Supplementary material

40843_2018_9307_MOESM1_ESM.pdf (1.2 mb)
Intrinsically reinforced silks are obtained by the incorporation of graphene quantum dots into silkworms

References

  1. 1.
    Guo C, Zhang J, Wang X, et al. Comparative study of straindependent structural changes of silkworm silks: insight into the structural origin of strain-stiffening. Small, 2017, 13: 1702266CrossRefGoogle Scholar
  2. 2.
    Wang X, Zhao P, Li Y, et al. Modifying the mechanical properties of silk fiber by genetically disrupting the ionic environment for silk formation. Biomacromolecules, 2015, 16: 3119–3125CrossRefGoogle Scholar
  3. 3.
    Koh LD, Cheng Y, Teng CP, et al. Structures, mechanical properties and applications of silk fibroin materials. Prog Polymer Sci, 2015, 46: 86–110CrossRefGoogle Scholar
  4. 4.
    Fang G, Sapru S, Behera S, et al. Exploration of the tight structural–mechanical relationship in mulberry and non-mulberry silkworm silks. J Mater Chem B, 2016, 4: 4337–4347CrossRefGoogle Scholar
  5. 5.
    Li G, Li Y, Chen G, et al. Silk-based biomaterials in biomedical textiles and fiber-based implants. Adv Healthcare Mater, 2015, 4: 1134–1151CrossRefGoogle Scholar
  6. 6.
    Iizuka T, Sezutsu H, Tatematsu K, et al. Colored fluorescent silk made by transgenic silkworms. Adv Funct Mater, 2013, 23: 5232–5239CrossRefGoogle Scholar
  7. 7.
    Blamires SJ, Blackledge TA, Tso IM. Physicochemical property variation in spider silk: ecology, evolution, and synthetic production. Annu Rev Entomol, 2017, 62: 443–460CrossRefGoogle Scholar
  8. 8.
    Florczak A, Jastrzebska K, Mackiewicz A, et al. Blending two bioengineered spider silks to develop cancer targeting spheres. J Mater Chem B, 2017, 5: 3000–3011CrossRefGoogle Scholar
  9. 9.
    Teulé F, Miao YG, Sohn BH, et al. Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties. Proc Natl Acad Sci USA, 2012, 109: 923–928CrossRefGoogle Scholar
  10. 10.
    Andersson M, Jia Q, Abella A, et al. Biomimetic spinning of artificial spider silk from a chimeric minispidroin. Nat Chem Biol, 2017, 13: 262–264CrossRefGoogle Scholar
  11. 11.
    Tansil NC, Koh LD, Han MY. Functional silk: colored and luminescent. Adv Mater, 2012, 24: 1388–1397CrossRefGoogle Scholar
  12. 12.
    Lu Z, Mao C, Meng M, et al. Fabrication of CeO2 nanoparticlemodified silk for UV protection and antibacterial applications. J Colloid Interface Sci, 2014, 435: 8–14CrossRefGoogle Scholar
  13. 13.
    Chang S, Kang B, Dai Y, et al. A novel route to synthesize CdS quantum dots on the surface of silk fibers via γ-radiation. Mater Lett, 2008, 62: 3447–3449CrossRefGoogle Scholar
  14. 14.
    Wang X, Gao W, Xu S, et al. Luminescent fibers: In situ synthesis of silver nanoclusters on silk via ultraviolet light-induced reduction and their antibacterial activity. Chem Eng J, 2012, 210: 585–589CrossRefGoogle Scholar
  15. 15.
    Zhang P, Lan J, Wang Y, et al. Luminescent golden silk and fabric through in situ chemically coating pristine-silk with gold nanoclusters. Biomaterials, 2015, 36: 26–32CrossRefGoogle Scholar
  16. 16.
    Zhang F, Lu Q, Yue X, et al. Regeneration of high-quality silk fibroin fiber by wet spinning from CaCl2–formic acid solvent. Acta Biomater, 2015, 12: 139–145CrossRefGoogle Scholar
  17. 17.
    Hu X, Li J, Bai Y. Fabrication of high strength graphene/regenerated silk fibroin composite fibers by wet spinning. Mater Lett, 2017, 194: 224–226CrossRefGoogle Scholar
  18. 18.
    Zhang C, Zhang Y, Shao H, et al. Hybrid silk fibers dry-spun from regenerated silk fibroin/graphene oxide aqueous solutions. ACS Appl Mater Interfaces, 2016, 8: 3349–3358CrossRefGoogle Scholar
  19. 19.
    Tamura T, Thibert C, Royer C, et al. Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol, 2000, 18: 81–84CrossRefGoogle Scholar
  20. 20.
    Wang F, Xu H, Wang Y, et al. Advanced silk material spun by a transgenic silkworm promotes cell proliferation for biomedical application. Acta Biomater, 2014, 10: 4947–4955CrossRefGoogle Scholar
  21. 21.
    Wen H, Lan X, Zhang Y, et al. Transgenic silkworms (Bombyx mori) produce recombinant spider dragline silk in cocoons. Mol Biol Rep, 2010, 37: 1815–1821CrossRefGoogle Scholar
  22. 22.
    Nisal A, Trivedy K, Mohammad H, et al. Uptake of azo dyes into silk glands for production of colored silk cocoons using a green feeding approach. ACS Sustain Chem Eng, 2014, 2: 312–317CrossRefGoogle Scholar
  23. 23.
    Tansil NC, Li Y, Teng CP, et al. Intrinsically colored and luminescent silk. Adv Mater, 2011, 23: 1463–1466CrossRefGoogle Scholar
  24. 24.
    Teramoto H, Kojima K. Production of Bombyx mori silk fibroin incorporated with unnatural amino acids. Biomacromolecules, 2014, 15: 2682–2690CrossRefGoogle Scholar
  25. 25.
    Fernandes J, Nicodemo D, Oliveira JE, et al. Enhanced silk performance by enriching the silkworm diet with bordeaux mixture. J Mater Sci, 2017, 52: 2684–2693CrossRefGoogle Scholar
  26. 26.
    Cai L, Shao H, Hu X, et al. Reinforced and ultraviolet resistant silks from silkworms fed with titanium dioxide nanoparticles. ACS Sustain Chem Eng, 2015, 3: 2551–2557CrossRefGoogle Scholar
  27. 27.
    Wu GH, Song P, Zhang DY, et al. Robust composite silk fibers pulled out of silkworms directly fed with nanoparticles. Int J Biol Macromolecules, 2017, 104: 533–538CrossRefGoogle Scholar
  28. 28.
    Wang JT, Li LL, Feng L, et al. Directly obtaining pristine magnetic silk fibers from silkworm. Int J Biol Macromolecules, 2014, 63: 205–209CrossRefGoogle Scholar
  29. 29.
    Cheng L, Huang H, Chen S, et al. Characterization of silkworm larvae growth and properties of silk fibres after direct feeding of copper or silver nanoparticles. Mater Des, 2017, 129: 125–134CrossRefGoogle Scholar
  30. 30.
    Wang JT, Li LL, Zhang MY, et al. Directly obtaining high strength silk fiber from silkworm by feeding carbon nanotubes. Mater Sci Eng-C, 2014, 34: 417–421CrossRefGoogle Scholar
  31. 31.
    Wang Q, Wang C, Zhang M, et al. Feeding single-walled carbon nanotubes or graphene to silkworms for reinforced silk fibers. Nano Lett, 2016, 16: 6695–6700CrossRefGoogle Scholar
  32. 32.
    Hu K, Kulkarni DD, Choi I, et al. Graphene-polymer nanocomposites for structural and functional applications. Prog Polymer Sci, 2014, 39: 1934–1972CrossRefGoogle Scholar
  33. 33.
    Tang LC, Wan YJ, Yan D, et al. The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon, 2013, 60: 16–27CrossRefGoogle Scholar
  34. 34.
    Hwang J, Yoon T, Jin SH, et al. Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv Mater, 2013, 25: 6724–6729CrossRefGoogle Scholar
  35. 35.
    Lepore E, Bosia F, Bonaccorso F, et al. Spider silk reinforced by graphene or carbon nanotubes. 2D Mater, 2017, 4: 031013CrossRefGoogle Scholar
  36. 36.
    Bacon M, Bradley SJ, Nann T. Graphene quantum dots. Part Part Syst Charact, 2014, 31: 415–428CrossRefGoogle Scholar
  37. 37.
    Liu WW, Feng YQ, Yan XB, et al. Superior micro-supercapacitors based on graphene quantum dots. Adv Funct Mater, 2013, 23: 4111–4122CrossRefGoogle Scholar
  38. 38.
    Shen J, Zhu Y, Yang X, et al. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun, 2012, 48: 3686–3699CrossRefGoogle Scholar
  39. 39.
    Tetsuka H, Nagoya A, Fukusumi T, et al. Molecularly designed, nitrogen-functionalized graphene quantum dots for optoelectronic devices. Adv Mater, 2016, 28: 4632–4638CrossRefGoogle Scholar
  40. 40.
    Edwards HGM, Farwell DW. Raman spectroscopic studies of silk. J Raman Spectrosc, 1995, 26: 901–909CrossRefGoogle Scholar
  41. 41.
    Sirichaisit J, Brookes VL, Young RJ, et al. Analysis of structure/ property relationships in silkworm (Bombyx mori) and spider dragline (Nephila edulis) silks using Raman spectroscopy. Biomacromolecules, 2003, 4: 387–394CrossRefGoogle Scholar
  42. 42.
    Keten S, Xu Z, Ihle B, et al. Nanoconfinement controls stiffneßs, strength and mechanical toughness of ß-sheet crystals in silk. Nat Mater, 2010, 9: 359–367CrossRefGoogle Scholar
  43. 43.
    Du N, Liu XY, Narayanan J, et al. Design of superior spider silk: from nanostructure to mechanical properties. BioPhys J, 2006, 91: 4528–4535CrossRefGoogle Scholar
  44. 44.
    Grubb DT, Ji G. Molecular chain orientation in supercontracted and re-extended spider silk. Int J Biol Macromolecules, 1999, 24: 203–210CrossRefGoogle Scholar
  45. 45.
    Numata K, Sato R, Yazawa K, et al. Crystal structure and physical properties of Antheraea yamamai silk fibers: Long poly(alanine) sequences are partially in the crystalline region. Polymer, 2015, 77: 87–94CrossRefGoogle Scholar
  46. 46.
    Sampath S, Isdebski T, Jenkins JE, et al. X-ray diffraction study of nanocrystalline and amorphous structure within major and minor ampullate dragline spider silks. Soft Matter, 2012, 8: 6713–6722CrossRefGoogle Scholar
  47. 47.
    Yen FS, Chen WC, Yang JM, et al. Crystallite size variations of nanosized Fe2O3 powders during γ- to a-phase transformation. Nano Lett, 2002, 2: 245–252CrossRefGoogle Scholar
  48. 48.
    Zhang H, Bhunia K, Munoz N, et al. Linking morphology changes to barrier properties of polymeric packaging for microwave-assisted thermal sterilized food. J Appl Polym Sci, 2017, 134: 45481CrossRefGoogle Scholar
  49. 49.
    Ling S, Qi Z, Knight DP, et al. Synchrotron FTIR microspectroscopy of single natural silk fibers. Biomacromolecules, 2011, 12: 3344–3349CrossRefGoogle Scholar
  50. 50.
    Lin N, Cao L, Huang Q, et al. Functionalization of silk fibroin materials at mesoscale. Adv Funct Mater, 2016, 26: 8885–8902CrossRefGoogle Scholar
  51. 51.
    Hu X, Kaplan D, Cebe P. Determining b-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy. Macromolecules, 2006, 39: 6161–6170CrossRefGoogle Scholar
  52. 52.
    Huang S, Qiu H, Lu S, et al. Study on the molecular interaction of graphene quantum dots with human serum albumin: Combined spectroscopic and electrochemical approaches. J Hazard Mater, 2015, 285: 18–26CrossRefGoogle Scholar
  53. 53.
    Li L, Wu G, Yang G, et al. Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale, 2013, 5: 4015–4039CrossRefGoogle Scholar
  54. 54.
    Ling S, Li C, Adamcik J, et al. Directed growth of silk nanofibrils on graphene and their hybrid nanocomposites. ACS Macro Lett, 2014, 3: 146–152CrossRefGoogle Scholar
  55. 55.
    Hu K, Gupta MK, Kulkarni DD, et al. Ultra-robust graphene oxide-silk fibroin nanocomposite membranes. Adv Mater, 2013, 25: 2301–2307CrossRefGoogle Scholar
  56. 56.
    Nova A, Keten S, Pugno NM, et al. Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils. Nano Lett, 2010, 10: 2626–2634CrossRefGoogle Scholar
  57. 57.
    Lefèvre T, Rousseau ME, Pézolet M. Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy. BioPhys J, 2007, 92: 2885–2895CrossRefGoogle Scholar
  58. 58.
    Hernandez Cruz D, Roußseau ME, West MM, et al. Quantitative mapping of the orientation of fibroin ß-Sheets in B. mori cocoon fibers by scanning transmission X-ray microscopy. Biomacromolecules, 2006, 7: 836–843CrossRefGoogle Scholar
  59. 59.
    Oroudjev E, Soares J, Arcidiacono S, et al. Segmented nanofibers of spider dragline silk: Atomic force microscopy and single-molecule force spectroscopy. Proc Natl Acad Sci USA, 2002, 99: 6460–6465CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lin Ma (马琳)
    • 1
    • 2
    • 3
  • Maxwell Akologo Akurugu
    • 1
  • Vivian Andoh
    • 1
  • Haiyan Liu (刘海燕)
    • 4
  • Jiangchao Song (宋江超)
    • 1
    • 2
    • 3
  • Guohua Wu (武国华)
    • 1
    • 2
    • 3
  • Long Li (李龙)
    • 1
    • 2
    • 3
  1. 1.College of BiotechnologyJiangsu University of Science and TechnologyZhenjiangChina
  2. 2.The Sericultural Research InstituteChinese Academy of Agricultural SciencesZhenjiangChina
  3. 3.Laboratory of Risk Assessment for Sericultural Products and Edible InsectsMinistry of AgricultureZhenjiangChina
  4. 4.Department of tea and food technologyJiangsu Polytechnic College Agriculture and ForestryJurongChina

Personalised recommendations