Science China Materials

, Volume 62, Issue 1, pp 59–64 | Cite as

Epitaxial growth of horizontally aligned single-crystal arrays of perovskite

  • Yitan Li (李逸坦)
  • Yuguang Chen (陈昱光)
  • Lu Han (汉露)
  • Xuemei Li (李雪梅)
  • Jian Sheng (盛建)
  • Hao Sun (孙昊)
  • Yan Li (李彦)Email author


Well-aligned single-crystal nanowire arrays of CH3NH3PbI3 have shown potentials in laser sources and photovoltaic applications. Here we developed a solution based epitaxial method to grow CH3NH3PbI3 nanowire arrays. By confining the precursor solution between a silicon wafer and ST-cut quartz, the evaporation rate of the solvent was slowed down which brings a more stable and controllable solution environment. Relying on the lattice match between CH3NH3PbI3 and ST-cut quartz, arrays of single-crystal nanowires of CH3NH3PbI3 have been grown epitaxially. The densities and lengths of CH3NH3PbI3 nanowires can be tuned. The lengths of the resultant crystals range from several microns to over one millimeter. Such CH3NH3PbI3 arrays with good alignment and crystallinity were then applied to fabricate photovoltaic devices with good performances.


CH3NH3PbI3 single crystal arrays epitaxial growth tunable lengths 



有序单晶CH3NH3PbI3钙钛矿纳米线阵列在激光和光电领域具有良好的应用前景. 溶液法被认为是一种简便、高效且成本低廉的方法并被用于构建钙钛矿晶体材料. 本文介绍了一种限域外延生长方法并将其用于构建有序单晶CH3NH3PbI3钙钛矿纳米线阵列. 通过将钙钛矿材料的前驱体溶液限制在由硅片和ST-cut的石英构成的反应腔中, 溶液挥发行为受到限制, 进而为晶体生长提供了更加稳定可控的环境. 由于CH3NH3PbI3和ST-cut石英之间存在晶格匹配, 可以在石英表面获得密集的单晶钙钛矿纳米线阵列. 通过调节反应腔尺寸, 可以进一步调控钙钛矿纳米线的长度,获得长度为由微米尺寸到亚厘米尺寸不等的阵列.CH3NH3PbI3钙钛矿阵列进一步被用于光电器件的构建并获得了较好的性能.



This research is financially supported by the National Natural Science Foundation of China (21631002, U1632119, 21621061, and 91633301) and Ministry of Science and Technology of the People’s Republic of China (2016YFA0201904).

Supplementary material

40843_2018_9304_MOESM1_ESM.pdf (631 kb)
Epitaxial growth of horizontally aligned single crystal arrays of perovskite


  1. 1.
    Khang DY, Jiang H, Huang Y, et al. A stretchable form of singlecrystal silicon for high-performance electronics on rubber substrates. Science, 2006, 311: 208–212CrossRefGoogle Scholar
  2. 2.
    Duan X, Niu C, Sahi V, et al. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature, 2003, 425: 274–278CrossRefGoogle Scholar
  3. 3.
    Li H, Tee BCK, Giri G, et al. High-performance transistors and complementary inverters based on solution-grown aligned organic single-crystals. Adv Mater, 2012, 24: 2588–2591CrossRefGoogle Scholar
  4. 4.
    Briseno AL,Mannsfeld SCB, Ling MM, et al. Patterning organic single-crystal transistor arrays. Nature,, 2006, 444: 913–917CrossRefGoogle Scholar
  5. 5.
    Baibich MN, Broto JM, Fert A, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett, 1988, 61: 2472–2475CrossRefGoogle Scholar
  6. 6.
    Binasch G, Grünberg P, Saurenbach F, et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B, 1989, 39: 4828–4830CrossRefGoogle Scholar
  7. 7.
    Park WI, Yi GC, Jang HM. Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn1−xMgxO (0≤x≤0.49) thin films. Appl Phys Lett, 2001, 79: 2022–2024CrossRefGoogle Scholar
  8. 8.
    Haury A, Wasiela A, Arnoult A, et al. Observation of a ferromagnetic transition induced by two-dimensional hole gas in modulation-doped CdMnTe quantum wells. Phys Rev Lett, 1997, 79: 511–514CrossRefGoogle Scholar
  9. 9.
    Zhang Y, Chang TR, Zhou B, et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat Nanotechnol, 2014, 9: 111–115CrossRefGoogle Scholar
  10. 10.
    Geim AK, Grigorieva IV. van der Waals heterostructures. Nature, 2013, 499: 419–425CrossRefGoogle Scholar
  11. 11.
    Giri G, Verploegen E, Mannsfeld SCB, et al. Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature, 2011, 480: 504–508CrossRefGoogle Scholar
  12. 12.
    Diao Y, Shaw L, Bao Z, et al. Morphology control strategies for solution-processed organic semiconductor thin films. Energy Environ Sci, 2014, 7: 2145–2159CrossRefGoogle Scholar
  13. 13.
    Diao Y, Tee BCK, Giri G, et al. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains. Nat Mater, 2013, 12: 665–671CrossRefGoogle Scholar
  14. 14.
    Minemawari H, Yamada T, Matsui H, et al. Inkjet printing of single-crystal films. Nature, 2011, 475: 364–367CrossRefGoogle Scholar
  15. 15.
    Arias AC, MacKenzie JD, McCulloch I, et al. Materials and applications for large area electronics: solution-based approaches. Chem Rev, 2010, 110: 3–24CrossRefGoogle Scholar
  16. 16.
    Yuan Y, Giri G, Ayzner AL, et al. Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nat Commun, 2014, 5: 3005CrossRefGoogle Scholar
  17. 17.
    Park NG. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J Phys Chem Lett, 2013, 4: 2423–2429CrossRefGoogle Scholar
  18. 18.
    Grätzel M. The light and shade of perovskite solar cells. Nat Mater, 2014, 13: 838–842CrossRefGoogle Scholar
  19. 19.
    Snaith HJ. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J Phys Chem Lett, 2013, 4: 3623–3630CrossRefGoogle Scholar
  20. 20.
    Ding J, Yan Q. Progress in organic-inorganic hybrid halide perovskite single crystal: growth techniques and applications. Sci China Mater, 2017, 60: 1063–1078CrossRefGoogle Scholar
  21. 21.
    Wang Y, Liu D, Zhang P, et al. Reveal the growth mechanism in perovskite films via weakly coordinating solvent annealing. Sci China Mater, 2018, doi: 10.1007/s40843-018-9263-7Google Scholar
  22. 22.
    Ding X, Ren Y, Wu Y, et al. Sequential deposition method fabricating carbonbased fully-inorganic perovskite solar cells. Sci China Mater, 2018, 61: 73–79CrossRefGoogle Scholar
  23. 23.
    Chen YX, Ge QQ, Shi Y, et al. General space-confined on-substrate fabrication of thickness-adjustable hybrid perovskite single-crystalline thin films. J Am Chem Soc, 2016, 138: 16196–16199CrossRefGoogle Scholar
  24. 24.
    Park YS, Guo S, Makarov NS, et al. Room temperature singlephoton emission from individual perovskite quantum dots. ACS Nano, 2015, 9: 10386–10393CrossRefGoogle Scholar
  25. 25.
    Shi Z, Li Y, Zhang Y, et al. High-efficiency and air-stable perovskite quantum dots light-emitting diodes with an all-inorganic heterostructure. Nano Lett, 2017, 17: 313–321CrossRefGoogle Scholar
  26. 26.
    Pan J, Quan LN, Zhao Y, et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv Mater, 2016, 28: 8718–8725CrossRefGoogle Scholar
  27. 27.
    Liu C, Wang K, Du P, et al. Ultrasensitive solution-processed broad-band photodetectors using CH3NH3PbI3 perovskite hybrids and PbS quantum dots as light harvesters. Nanoscale, 2015, 7: 16460–16469CrossRefGoogle Scholar
  28. 28.
    Shoaib M, Zhang X, Wang X, et al. Directional growth of ultralong CsPbBr3 perovskite nanowires for high-performance photodetectors. J Am Chem Soc, 2017, 139: 15592–15595CrossRefGoogle Scholar
  29. 29.
    Chen J, Morrow DJ, Fu Y, et al. Single-crystal thin films of cesium lead bromide perovskite epitaxially grown on metal oxide perovskite (SrTiO3). J Am Chem Soc, 2017, 139: 13525–13532CrossRefGoogle Scholar
  30. 30.
    Xing G, Mathews N, Lim SS, et al. Low-temperature solutionprocessed wavelength-tunable perovskites for lasing. Nat Mater, 2014, 13: 476–480CrossRefGoogle Scholar
  31. 31.
    Deschler F, Price M, Pathak S, et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J Phys Chem Lett, 2014, 5: 1421–1426CrossRefGoogle Scholar
  32. 32.
    Zhu H, Fu Y, Meng F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater, 2015, 14: 636–642CrossRefGoogle Scholar
  33. 33.
    Eaton SW, Lai M, Gibson NA, et al. Lasing in robust cesium lead halide perovskite nanowires. Proc Natl Acad Sci USA, 2016, 113: 1993–1998CrossRefGoogle Scholar
  34. 34.
    Zhang Q, Ha ST, Liu X, et al. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett, 2014, 14: 5995–6001CrossRefGoogle Scholar
  35. 35.
    Li Y, Wang X, Wu S, et al. Large-scale aligned crystalline CH3NH3PbI3 perovskite array films. J Mater Chem A, 2015, 3: 18847–18851CrossRefGoogle Scholar
  36. 36.
    Pimpinelli A, Villain J, Physics of Crystal Growth. Cambridge: Cambridge University Press, 1998, Vol. 19Google Scholar
  37. 37.
    Hurle D T, Handbook of Crystal Growth. Amsterdam: Elsevier, 1993, Vol. 1Google Scholar
  38. 38.
    Lan CW, Kou S. Heat transfer, fluid flow and interface shapes in floating-zone crystal growth. J Cryst Growth, 1991, 108: 351–366CrossRefGoogle Scholar
  39. 39.
    Zhou Y, Yang M, Wu W, et al. Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells. J Mater Chem A, 2015, 3: 8178–8184CrossRefGoogle Scholar
  40. 40.
    Yang M, Zhou Y, Zeng Y, et al. Square-centimeter solution-processed planar CH3NH3PbI3 perovskite solar cells with efficiency exceeding 15%. Adv Mater, 2015, 27: 6363–6370CrossRefGoogle Scholar
  41. 41.
    Im JH, Lee CR, Lee JW, et al. 6.5% efficient perovskite quantumdot-sensitized solar cell. Nanoscale, 2011, 3: 4088–4093CrossRefGoogle Scholar
  42. 42.
    Ponseca Jr. CS, Savenije TJ, Abdellah M, et al. Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. J Am Chem Soc, 2014, 136: 5189–5192CrossRefGoogle Scholar
  43. 43.
    Fu Y, Zhu H, Stoumpos CC, et al. Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). ACS Nano, 2016, 10: 7963–7972CrossRefGoogle Scholar
  44. 44.
    Saidaminov MI, Abdelhady AL, Maculan G, et al. Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth. Chem Commun, 2015, 51: 17658–17661CrossRefGoogle Scholar
  45. 45.
    Zhang Y, Du J, Wu X, et al. Ultrasensitive photodetectors based on island-structured CH3NH3PbI3 thin films. ACS Appl Mater Interfaces, 2015, 7: 21634–21638CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yitan Li (李逸坦)
    • 1
    • 2
  • Yuguang Chen (陈昱光)
    • 1
  • Lu Han (汉露)
    • 1
  • Xuemei Li (李雪梅)
    • 3
  • Jian Sheng (盛建)
    • 1
  • Hao Sun (孙昊)
    • 4
  • Yan Li (李彦)
    • 1
    • 2
    Email author
  1. 1.Key Laboratory for the Physics and Chemistry of Nanodevices, Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
  2. 2.Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
  3. 3.Electron Microscopy LaboratoryPeking UniversityBeijingChina
  4. 4.Bruker (Beijing) Scientific Technology Co., Ltd.BeijingChina

Personalised recommendations