Advertisement

Science China Materials

, Volume 62, Issue 1, pp 87–94 | Cite as

A lightweight carbon nanofiber-based 3D structured matrix with high nitrogen-doping level for lithium metal anodes

  • Haoliang Wu (吴浩良)
  • Yunbo Zhang (张云博)
  • Yaqian Deng (邓亚茜)
  • Zhijia Huang (黄志佳)
  • Chen Zhang (张琛)
  • Yan-Bing He (贺艳兵)
  • Wei Lv (吕伟)
  • Quan-Hong Yang (杨全红)
Articles

Abstract

Lithium metal is considered to be the most promising anode material for the next-generation rechargeable batteries. However, the uniform and dendrite-free deposition of Li metal anode is hard to achieve, hindering its practical applications. Herein, a lightweight, free-standing and nitrogen-doped carbon nanofiber-based 3D structured conductive matrix (NCNF), which is characterized by a robust and interconnected 3D network with high doping level of 9.5 at%, is prepared by electrospinning as the current collector for Li metal anode. Uniform Li nucleation with reduced polarization and dendrite-free Li deposition are achieved because the NCNF with high nitrogen-doping level and high conductivity provide abundant and homogenous metallic Li nucleation and deposition sites. Excellent cycling stability with high coulombic efficiency are realized. The Li plated NCNF was paired with LiFePO4 to assemble the full battery, also showing high cyclic stability.

Keywords

lithium metal anode nucleation dendrite-free nitrogen-doping overpotential 

用于锂金属负极的轻质、 高掺氮量碳纳米纤维基三维集流体

摘要

锂金属是未来二次电池实现高能量密度化的关键负极材料, 然而, 如何实现锂金属的均匀和无枝晶沉积是目前制约其实际应用的关键问题. 本论文采用静电纺丝技术及高温碳化方法制备了一种轻质、 高掺氮量(9.5 at%)的三维碳纳米纤维集流体. 该集流体较低的密度能提升基于整个电池的能量密度, 而且高掺氮量使其具备亲锂的特性, 从而有效降低锂离子在其表面的初始形核过电位, 得到均匀的金属锂种子层, 实现后续金属锂的均匀沉积. 这种三维结构有效抑制了锂枝晶的产生, 降低了电池的极化, 金属锂沉积/脱除测试中其库伦效率在循环250圈后仍可保持在98%以上. 将其沉积金属锂后与LiFePO4组装全电池, 电池极化降低, 在循环300圈后容量保持率可达82.4%, 表现出很好的应用前景.

Notes

Acknowledgements

The authors acknowledge the financial support from the Guangdong Natural Science Funds for Distinguished Young Scholar (2017B030306006), the National Natural Science Foundation of China (51772164, U1601206 and U1710256), the National Key Basic Research Program of China (2014CB932400), and Shenzhen Technical Plan Project (JCYJ20150529164918734 and JCYJ20170412171359175).

Supplementary material

40843_2018_9298_MOESM1_ESM.pdf (4.5 mb)
A lightweight carbon nanofiber-based 3D structured matrix with high nitrogen-doping level for lithium metal anodes

References

  1. 1.
    Armand M, Tarascon JM. Building better batteries. Nature, 2008, 451: 652–657CrossRefGoogle Scholar
  2. 2.
    Goodenough JB. Energy storage materials: A perspective. Energy Storage Mater, 2015, 1: 158–161CrossRefGoogle Scholar
  3. 3.
    Zhang C, Yang QH. Packing sulfur into carbon framework for high volumetric performance lithium-sulfur batteries. Sci China Mater, 2015, 58: 349–354CrossRefGoogle Scholar
  4. 4.
    Palacín MR, de Guibert A. Why do batteries fail? Science, 2016, 351: 1253292–1253292CrossRefGoogle Scholar
  5. 5.
    Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev, 2014, 114: 11503–11618CrossRefGoogle Scholar
  6. 6.
    Li L, Chen C, Yu A. New electrochemical energy storage systems based on metallic lithium anode—the research status, problems and challenges of lithium-sulfur, lithium-oxygen and all solid state batteries. Sci China Chem, 2017, 60: 1402–1412CrossRefGoogle Scholar
  7. 7.
    Bruce PG, Freunberger SA, Hardwick LJ, et al. Li–O2 and Li–S batteries with high energy storage. Nat Mater, 2012, 11: 19–29CrossRefGoogle Scholar
  8. 8.
    Choi JW, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater, 2016, 1: 16013CrossRefGoogle Scholar
  9. 9.
    Cheng XB, Zhang R, Zhao CZ, et al. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev, 2017, 117: 10403–10473CrossRefGoogle Scholar
  10. 10.
    Xu W, Wang J, Ding F, et al. Lithium metal anodes for rechargeable batteries. Energy Environ Sci, 2014, 7: 513–537CrossRefGoogle Scholar
  11. 11.
    Lang J, Qi L, Luo Y, et al. High performance lithium metal anode: Progress and prospects. Energy Storage Mater, 2017, 7: 115–129CrossRefGoogle Scholar
  12. 12.
    Zhang C, Huang Z, Lv W, et al. Carbon enables the practical use of lithium metal in a battery. Carbon, 2017, 123: 744–755CrossRefGoogle Scholar
  13. 13.
    Zhang Y, Qian J, Xu W, et al. Dendrite-free lithium deposition with self-aligned nanorod structure. Nano Lett, 2014, 14: 6889–6896CrossRefGoogle Scholar
  14. 14.
    Heine J, Hilbig P, Qi X, et al. Fluoroethylene carbonate as electrolyte additive in tetraethylene glycol dimethyl ether based electrolytes for application in lithium ion and lithium metal batteries. J Electrochem Soc, 2015, 162: A1094–A1101CrossRefGoogle Scholar
  15. 15.
    Zhao CZ, Cheng XB, Zhang R, et al. Li2S5-based ternary-salt electrolyte for robust lithium metal anode. Energy Storage Mater, 2016, 3: 77–84CrossRefGoogle Scholar
  16. 16.
    Yan C, Cheng XB, Zhao CZ, et al. Lithium metal protection through in-situ formed solid electrolyte interphase in lithiumsulfur batteries: The role of polysulfides on lithium anode. J Power Sources, 2016, 327: 212–220CrossRefGoogle Scholar
  17. 17.
    Li W, Yao H, Yan K, et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat Commun, 2015, 6: 7436CrossRefGoogle Scholar
  18. 18.
    Zhang XQ, Chen X, Cheng XB, et al. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes. Angew Chem Int Ed, 2018, 57: 5301–5305CrossRefGoogle Scholar
  19. 19.
    Li NW, Yin YX, Li JY, et al. Passivation of lithium metal anode via hybrid ionic liquid electrolyte toward stable Li plating/stripping. Adv Sci, 2017, 4: 1600400CrossRefGoogle Scholar
  20. 20.
    Qian J, Xu W, Bhattacharya P, et al. Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive. Nano Energy, 2015, 15: 135–144CrossRefGoogle Scholar
  21. 21.
    Chen R, Qu W, Guo X, et al. The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Mater Horiz, 2016, 3: 487–516CrossRefGoogle Scholar
  22. 22.
    Liu X, Ding G, Zhou X, et al. An interpenetrating network poly (diethylene glycol carbonate)-based polymer electrolyte for solid state lithium batteries. J Mater Chem A, 2017, 5: 11124–11130CrossRefGoogle Scholar
  23. 23.
    Lu Q, He YB, Yu Q, et al. Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte. Adv Mater, 2017, 29: 1604460CrossRefGoogle Scholar
  24. 24.
    Cheng XB, Yan C, Chen X, et al. Implantable solid electrolyte interphase in lithium-metal batteries. Chem, 2017, 2: 258–270CrossRefGoogle Scholar
  25. 25.
    Koch SL, Morgan BJ, Passerini S, et al. Density functional theory screening of gas-treatment strategies for stabilization of high energy-density lithium metal anodes. J Power Sources, 2015, 296: 150–161CrossRefGoogle Scholar
  26. 26.
    Ma L, Kim MS, Archer LA. Stable artificial solid electrolyte interphases for lithium batteries. Chem Mater, 2017, 29: 4181–4189CrossRefGoogle Scholar
  27. 27.
    Wang L, Wang Q, Jia W, et al. Li metal coated with amorphous Li3PO4 via magnetron sputtering for stable and long-cycle life lithium metal batteries. J Power Sources, 2017, 342: 175–182CrossRefGoogle Scholar
  28. 28.
    Zheng G, Lee SW, Liang Z, et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotechnol, 2014, 9: 618–623CrossRefGoogle Scholar
  29. 29.
    Zhu Y, He X, Mo Y. Strategies based on nitride materials chemistry to stabilize Li metal anode. Adv Sci, 2017, 4: 1600517CrossRefGoogle Scholar
  30. 30.
    Li Q, Zhu S, Lu Y. 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries. Adv Funct Mater, 2017, 27: 1606422CrossRefGoogle Scholar
  31. 31.
    Raji ARO, Villegas Salvatierra R, Kim ND, et al. Lithium batteries with nearly maximum metal storage. ACS Nano, 2017, 11: 6362–6369CrossRefGoogle Scholar
  32. 32.
    Wang SH, Yin YX, Zuo TT, et al. Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels. Adv Mater, 2017, 29: 1703729CrossRefGoogle Scholar
  33. 33.
    Yang CP, Yin YX, Zhang SF, et al. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat Commun, 2015, 6: 8058CrossRefGoogle Scholar
  34. 34.
    Yun Q, He YB, Lv W, et al. Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv Mater, 2016, 28: 6932–6939CrossRefGoogle Scholar
  35. 35.
    Zhang C, Lv W, Zhou G, et al. Vertically aligned lithiophilic CuO nanosheets on a Cu collector to stabilize lithium deposition for lithium metal batteries. Adv Energy Mater, 2018, 12: 1703404CrossRefGoogle Scholar
  36. 36.
    Zhang YJ, Liu SF, Wang XL, et al. Composite Li metal anode with vertical graphene host for high performance Li-S batteries. J Power Sources, 2018, 374: 205–210CrossRefGoogle Scholar
  37. 37.
    Zhang R, Li NW, Cheng XB, et al. Advanced micro/nanostructures for lithium metal anodes. Adv Sci, 2017, 4: 1600445CrossRefGoogle Scholar
  38. 38.
    Cui J, Zhan TG, Zhang KD, et al. The recent advances in constructing designed electrode in lithium metal batteries. Chin Chem Lett, 2017, 28: 2171–2179CrossRefGoogle Scholar
  39. 39.
    Lu LL, Zhang Y, Pan Z, et al. Lithiophilic Cu–Ni core–shell nanowire network as a stable host for improving lithium anode performance. Energy Storage Mater, 2017, 9: 31–38CrossRefGoogle Scholar
  40. 40.
    Wiegrebe L. An autocorrelation model of bat sonar. Biol Cybern, 2008, 98: 587–595CrossRefGoogle Scholar
  41. 41.
    Zhang R, Chen XR, Chen X, et al. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew Chem Int Ed, 2017, 56: 7764–7768CrossRefGoogle Scholar
  42. 42.
    Liu L, Yin YX, Li JY, et al. Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes. Adv Mater, 2018, 30: 1706216CrossRefGoogle Scholar
  43. 43.
    Frank E, Steudle LM, Ingildeev D, et al. Carbon fibers: precursor systems, processing, structure, and properties. Angew Chem Int Ed, 2014, 53: 5262–5298CrossRefGoogle Scholar
  44. 44.
    Rahaman MSA, Ismail AF, Mustafa A. A review of heat treatment on polyacrylonitrile fiber. Polym Degrad Stab, 2007, 92: 1421–1432CrossRefGoogle Scholar
  45. 45.
    Yan K, Lu Z, Lee HW, et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat Energy, 2016, 1: 16010CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Haoliang Wu (吴浩良)
    • 1
  • Yunbo Zhang (张云博)
    • 2
  • Yaqian Deng (邓亚茜)
    • 3
  • Zhijia Huang (黄志佳)
    • 2
  • Chen Zhang (张琛)
    • 3
  • Yan-Bing He (贺艳兵)
    • 3
  • Wei Lv (吕伟)
    • 3
  • Quan-Hong Yang (杨全红)
    • 1
  1. 1.Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
  2. 2.Tsinghua-Berkeley Shenzhen Institute (TBSI)Tsinghua UniversityShenzhenChina
  3. 3.Engineering Laboratory for Functionalized Carbon Materials, Shenzhen Key Laboratory for Graphene-based Materials, Graduate School at ShenzhenTsinghua UniversityShenzhenChina

Personalised recommendations