Science China Materials

, Volume 61, Issue 10, pp 1257–1277 | Cite as

Two-dimensional organic-inorganic hybrid perovskite: from material properties to device applications

  • Shuang Ma (马爽)
  • Molang Cai (蔡墨朗)
  • Tai Cheng (程泰)
  • Xihong Ding (丁希宏)
  • Xiaoqiang Shi (时小强)
  • Ahmed Alsaedi
  • Tasawar Hayat
  • Yong Ding (丁勇)Email author
  • Zhan’ao Tan (谭占鳌)Email author
  • Songyuan Dai (戴松元)Email author


The two-dimensional (2D) perovskite (including pure-2D and quasi-2D) is formed by introducing large-group ammonium halides into conventional bulk perovskite. In the past twenty years, 2D perovskite materials were widely developed with the enriched species and advanced physical-knowledge in material characteristics as well as optoelectronic device applications. To review achievments in 2D perovskite, the fundamental mechanism and properties of 2D perovskite are introduced to offer insight into device performance. Moreover, the preparation methods of 2D perovskite films are summarized and compared. The latest successful applications of the 2D perovskite in the solar cells and light-emitting diodes fields, especially the advanced stability of 2D perovskite solar cells (PeSCs) and the efficient 2D perovskite light-emitting diodes (PeLEDs), are also achieved. Furthermore, the challenges and outlook of 2D perovskite materials are proposed.


2D perovskite material properties preparation methods optoelectronic applications 

二维有机-无机杂化钙钛矿: 从材料性能到器件应用


二维(2D)钙钛矿材料(包括纯2D和准2D)是在传统意义上的三维钙钛矿晶格中插入大基团卤化铵形成的. 在过去的20年里, 二维钙钛矿材料种类不断丰富, 相关理论研究不断深入, 在光电器件领域的应用不断拓展. 本综述介绍了2D钙钛矿材料的基本形成机制和性能, 汇总和比较了2D钙钛矿薄膜的制备方法, 并给出了其在太阳电池以及发光二极管领域的应用实例. 最后, 提出了该领域亟待解决的问题, 以及未来的研究趋势.



This work is supported by the National Key Research and Development Program of China (2016YFA0202401), the 111 Project (B16016), the National Natural Science Foundation of China (51572080, 51702096 and U1705256), and the Fundamental Research Funds for the Central Universities (2017XS080).


  1. 1.
    Weber D. CH3NH3SnBrxI3-x (x=0–3), ein Sn(II)-System mit kubischer Perowskitstruktur/CH3NH3SnBrxI3-x (x=0–3), a Sn(II)-system with cubic perovskite structure. Zeitschrift für Naturforschung B, 1978, 33: 862–865CrossRefGoogle Scholar
  2. 2.
    Weber D. CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur/CH3NH3PbX3, a Pb(II)-System with cubic perovskite structure. Zeitschrift für Naturforschung B, 1978, 33: 1443–1445CrossRefGoogle Scholar
  3. 3.
    Li M, Wang ZK, Zhuo MP, et al. Pb-Sn-Cu ternary organometallic halide perovskite solar cells. Adv Mater, 2018, 131: 1800258CrossRefGoogle Scholar
  4. 4.
    Wang ZK, Li M, Yang YG, et al. High efficiency Pb-In binary metal perovskite solar cells. Adv Mater, 2016, 28: 6695–6703CrossRefGoogle Scholar
  5. 5.
    Sun S, Salim T, Mathews N, et al. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ Sci, 2014, 7: 399–407CrossRefGoogle Scholar
  6. 6.
    Tsai H, Nie W, Blancon JC, et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature, 2016, 536: 312–316CrossRefGoogle Scholar
  7. 7.
    Lim KG, Kim HB, Jeong J, et al. Boosting the power conversion efficiency of perovskite solar cells using self-organized polymeric hole extraction layers with high work function. Adv Mater, 2014, 26: 6461–6466CrossRefGoogle Scholar
  8. 8.
    Tyagi P, Arveson SM, Tisdale WA. Colloidal organohalide perovskite nanoplatelets exhibiting quantum confinement. J Phys Chem Lett, 2015, 6: 1911–1916CrossRefGoogle Scholar
  9. 9.
    Li N, Zhu Z, Chueh CC, et al. Mixed cation FAxPEA1-xPbI3 with enhanced phase and ambient stability toward high-performance perovskite solar cells. Adv Energy Mater, 2017, 7: 1601307CrossRefGoogle Scholar
  10. 10.
    Saparov B, Mitzi DB. Organic–inorganic perovskites: structural versatility for functional materials design. Chem Rev, 2016, 116: 4558–4596CrossRefGoogle Scholar
  11. 11.
    Wang N, Cheng L, Ge R, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat Photonics, 2016, 10: 699–704CrossRefGoogle Scholar
  12. 12.
    Yuan M, Quan LN, Comin R, et al. Perovskite energy funnels for efficient light-emitting diodes. Nat Nanotechnol, 2016, 11: 872–877CrossRefGoogle Scholar
  13. 13.
    Koh TM, Shanmugam V, Schlipf J, et al. Nanostructuring mixeddimensional perovskites: a route toward tunable, efficient photovoltaics. Adv Mater, 2016, 28: 3653–3661CrossRefGoogle Scholar
  14. 14.
    Cao DH, Stoumpos CC, Farha OK, et al. 2D homologous perovskites as light-absorbing materials for solar cell applications. J Am Chem Soc, 2015, 137: 7843–7850CrossRefGoogle Scholar
  15. 15.
    Hu H, Salim T, Chen B, et al. Molecularly engineered organicinorganic hybrid perovskite with multiple quantum well structure for multicolored light-emitting diodes. Sci Rep, 2016, 6: 33546CrossRefGoogle Scholar
  16. 16.
    Milot RL, Sutton RJ, Eperon GE, et al. Charge-carrier dynamics in 2D hybrid metal–halide perovskites. Nano Lett, 2016, 16: 7001–7007CrossRefGoogle Scholar
  17. 17.
    Xing G, Mathews N, Sun S, et al. Long-range balanced electronand hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342: 344–347CrossRefGoogle Scholar
  18. 18.
    Eperon GE, Burlakov VM, Docampo P, et al. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv Funct Mater, 2014, 24: 151–157CrossRefGoogle Scholar
  19. 19.
    Docampo P, Ball JM, Darwich M, et al. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat Commun, 2013, 4: 2761CrossRefGoogle Scholar
  20. 20.
    Liang PW, Liao CY, Chueh CC, et al. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv Mater, 2014, 26: 3748–3754CrossRefGoogle Scholar
  21. 21.
    Xue M, Zhou H, Xu Y, et al. High-performance ultraviolet-visible tunable perovskite photodetector based on solar cell structure. Sci China Mater, 2017, 60: 407–414CrossRefGoogle Scholar
  22. 22.
    Ding J, Yan Q. Progress in organic-inorganic hybrid halide perovskite single crystal: growth techniques and applications. Sci China Mater, 2017, 60: 1063–1078CrossRefGoogle Scholar
  23. 23.
    Ren Y, Duan B, Xu Y, et al. New insight into solvent engineering technology from evolution of intermediates via one-step spincoating approach. Sci China Mater, 2017, 60: 392–398CrossRefGoogle Scholar
  24. 24.
    Pascoe AR, Gu Q, Rothmann MU, et al. Directing nucleation and growth kinetics in solution-processed hybrid perovskite thinfilms. Sci China Mater, 2017, 60: 617–628CrossRefGoogle Scholar
  25. 25.
    Deng Y, Peng E, Shao Y, et al. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy Environ Sci, 2015, 8: 1544–1550CrossRefGoogle Scholar
  26. 26.
    Barrows AT, Pearson AJ, Kwak CK, et al. Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ Sci, 2014, 7: 2944–2950CrossRefGoogle Scholar
  27. 27.
    Chen H, Ye F, Tang W, et al. A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature, 2017, 131: 92–95Google Scholar
  28. 28.
    Ye F, Tang W, Xie F, et al. Low-temperature soft-cover deposition of uniform large-scale perovskite films for high-performance solar cells. Adv Mater, 2017, 29: 1701440CrossRefGoogle Scholar
  29. 29.
    Kind R. Structural phase transitions in perovskite layer structures. Ferroelectrics, 1980, 24: 81–88CrossRefGoogle Scholar
  30. 30.
    Arend H, Huber W, Mischgofsky FH, et al. Layer perovskites of the (CnH2n+1NH3)2MX4 and NH3(CH2)mNH3MX4 families with M = Cd, Cu, Fe, Mn or Pd and X = Cl or Br: Importance, solubilities and simple growth techniques. J Cryst Growth, 1978, 43: 213–223CrossRefGoogle Scholar
  31. 31.
    Swetha T, Singh SP. Perovskite solar cells based on small molecule hole transporting materials. J Mater Chem A, 2015, 3: 18329–18344CrossRefGoogle Scholar
  32. 32.
    Ishihara T, Takahashi J, Goto T. Exciton state in two-dimensional perovskite semiconductor (C10H21NH3)2PbI4. Solid State Commun, 1989, 69: 933–936CrossRefGoogle Scholar
  33. 33.
    Ishihara T, Takahashi J, Goto T. Optical properties due to electronic transitions in two-dimensional semiconductors (CnH2n+1NH3)2PbI4. Phys Rev B, 1990, 42: 11099–11107CrossRefGoogle Scholar
  34. 34.
    Calabrese J, Jones NL, Harlow RL, et al. Preparation and characterization of layered lead halide compounds. J Am Chem Soc, 1991, 113: 2328–2330CrossRefGoogle Scholar
  35. 35.
    Mitzi DB, Feild CA, Harrison WTA, et al. Conducting tin halides with a layered organic-based perovskite structure. Nature, 1994, 369: 467–469CrossRefGoogle Scholar
  36. 36.
    Papavassiliou GC, Koutselas IB. Structural, optical and related properties of some natural three- and lower-dimensional semiconductor systems. Synth Met, 1995, 71: 1713–1714CrossRefGoogle Scholar
  37. 37.
    Mitzi DB, Chondroudis K, Kagan CR. Design, structure, and optical properties of organic−inorganic perovskites containing an oligothiophene chromophore. Inorg Chem, 1999, 38: 6246–6256CrossRefGoogle Scholar
  38. 38.
    Cheng Z, Lin J. Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering. CrystEngComm, 2010, 12: 2646–2662CrossRefGoogle Scholar
  39. 39.
    Huang TJ, Thiang ZX, Yin X, et al. (CH3NH3)2PdCl4: A compound with two-dimensional organic-inorganic layered perovskite structure. Chem Eur J, 2016, 22: 2146–2152CrossRefGoogle Scholar
  40. 40.
    Yao K, Wang X, Xu Y, et al. Multilayered perovskite materials based on polymeric-ammonium cations for stable large-area solar cell. Chem Mater, 2016, 28: 3131–3138CrossRefGoogle Scholar
  41. 41.
    Kawano N, Koshimizu M, Sun Y, et al. Effects of organic moieties on luminescence properties of organic–inorganic layered perovskite-type compounds. J Phys Chem C, 2014, 118: 9101–9106CrossRefGoogle Scholar
  42. 42.
    Kitazawa N, Watanabe Y. Optical properties of natural quantumwell compounds (C6H5-CnH2n-NH3)2PbBr4 (n=1–4). J Phys Chem Solids, 2010, 71: 797–802CrossRefGoogle Scholar
  43. 43.
    Even J, Pedesseau L, Katan C. Understanding quantum confinement of charge carriers in layered 2D hybrid perovskites. ChemPhysChem, 2014, 15: 3733–3741CrossRefGoogle Scholar
  44. 44.
    Chong WK, Thirumal K, Giovanni D, et al. Dominant factors limiting the optical gain in layered two-dimensional halide perovskite thin films. Phys Chem Chem Phys, 2016, 18: 14701–14708CrossRefGoogle Scholar
  45. 45.
    Kamminga ME, Fang HH, Filip MR, et al. Confinement effects in low-dimensional lead iodide perovskite hybrids. Chem Mater, 2016, 28: 4554–4562CrossRefGoogle Scholar
  46. 46.
    Mitzi DB, Wang S, Feild CA, et al. Conducting layered organicinorganic halides containing (110)-oriented perovskite sheets. Science, 1995, 267: 1473–1476CrossRefGoogle Scholar
  47. 47.
    Mitzi DB. Solution-processed inorganic semiconductors. J Mater Chem, 2004, 14: 2355–2365CrossRefGoogle Scholar
  48. 48.
    Mitzi DB, Medeiros DR, Malenfant PRL. Intercalated organicinorganic perovskites stabilized by fluoroaryl-aryl interactions. Inorg Chem, 2002, 41: 2134–2145CrossRefGoogle Scholar
  49. 49.
    Quan LN, Yuan M, Comin R, et al. Ligand-stabilized reduceddimensionality perovskites. J Am Chem Soc, 2016, 138: 2649–2655CrossRefGoogle Scholar
  50. 50.
    Lin Y, Bai Y, Fang Y, et al. Suppressed ion migration in low-dimensional perovskites. ACS Energy Lett, 2017, 2: 1571–1572CrossRefGoogle Scholar
  51. 51.
    Cai B, Li X, Gu Y, et al. Quantum confinement effect of twodimensional all-inorganic halide perovskites. Sci China Mater, 2017, 60: 811–818CrossRefGoogle Scholar
  52. 52.
    Dou L, Wong AB, Yu Y, et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 2015, 349: 1518–1521CrossRefGoogle Scholar
  53. 53.
    Ishihara T. Optical properties of PbI-based perovskite structures. J Lumin, 1994, 60-61: 269–274CrossRefGoogle Scholar
  54. 54.
    Grancini G, Roldán-Carmona C, Zimmermann I, et al. One-Year stable perovskite solar cells by 2D/3D interface engineering. Nat Commun, 2017, 8: 15684CrossRefGoogle Scholar
  55. 55.
    Byun J, Cho H, Wolf C, et al. Efficient visible quasi-2D perovskite light-emitting diodes. Adv Mater, 2016, 28: 7515–7520CrossRefGoogle Scholar
  56. 56.
    Jones ED, Drummond TJ, Hjalmarson HP, et al. Photoluminescence studies of GaAs/AlAs short period superlattices. Superlattices MicroStruct, 1988, 4: 233–236CrossRefGoogle Scholar
  57. 57.
    Yaffe O, Chernikov A, Norman ZM, et al. Excitons in ultrathin organic-inorganic perovskite crystals. Phys Rev B, 2015, 92: 045414CrossRefGoogle Scholar
  58. 58.
    Kitazawa N, Aono M, Watanabe Y. Synthesis and luminescence properties of lead-halide based organic–inorganic layered perovskite compounds (CnH2n+1NH3)2PbI4 (n=4, 5, 7, 8 and 9). J Phys Chem Solids, 2011, 72: 1467–1471CrossRefGoogle Scholar
  59. 59.
    Hong X, Ishihara T, Nurmikko AV. Dielectric confinement effect on excitons in PbI4-based layered semiconductors. Phys Rev B, 1992, 45: 6961–6964CrossRefGoogle Scholar
  60. 60.
    Savenije TJ, Ponseca Jr. CS, Kunneman L, et al. Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite. J Phys Chem Lett, 2014, 5: 2189–2194CrossRefGoogle Scholar
  61. 61.
    Yang Y, Ostrowski DP, France RM, et al. Observation of a hotphonon bottleneck in lead-iodide perovskites. Nat Photonics, 2016, 10: 53–59CrossRefGoogle Scholar
  62. 62.
    Chondroudis K, Mitzi DB. Electroluminescence from an organic −inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers. Chem Mater, 1999, 11: 3028–3030CrossRefGoogle Scholar
  63. 63.
    Mitzi DB. Templating and structural engineering in organic–inorganic perovskites. J Chem Soc Dalton Trans, 2001, 1–12Google Scholar
  64. 64.
    Jeon NJ, Noh JH, Kim YC, et al. Solvent engineering for highperformance inorganic–organic hybrid perovskite solar cells. Nat Mater, 2014, 13: 897–903CrossRefGoogle Scholar
  65. 65.
    Burschka J, Pellet N, Moon SJ, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499: 316–319CrossRefGoogle Scholar
  66. 66.
    You J, Hong Z, Yang YM, et al. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano, 2014, 8: 1674–1680CrossRefGoogle Scholar
  67. 67.
    Liu D, Kelly TL. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photonics, 2014, 8: 133–138CrossRefGoogle Scholar
  68. 68.
    Chen Q, Zhou H, Hong Z, et al. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J Am Chem Soc, 2013, 136: 622–625CrossRefGoogle Scholar
  69. 69.
    Xiao M, Huang F, Huang W, et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thinfilm solar cells. Angew Chem, 2014, 126: 10056–10061CrossRefGoogle Scholar
  70. 70.
    Li X, Bi D, Yi C, et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science, 2016, 353: 58–62CrossRefGoogle Scholar
  71. 71.
    Liu M, Johnston MB, Snaith HJ. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501: 395–398CrossRefGoogle Scholar
  72. 72.
    Hu H, Wang D, Zhou Y, et al. Vapour-based processing of holeconductor- free CH3NH3PbI3 perovskite/C60 fullerene planar solar cells. RSC Adv, 2014, 4: 28964–28967CrossRefGoogle Scholar
  73. 73.
    Kim J, Kim G, Kim TK, et al. Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer. J Mater Chem A, 2014, 2: 17291–17296CrossRefGoogle Scholar
  74. 74.
    Wang KC, Shen PS, Li MH, et al. Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells. ACS Appl Mater Interfaces, 2014, 6: 11851–11858CrossRefGoogle Scholar
  75. 75.
    Ding X, Ren Y, Wu Y, et al. Sequential deposition method fabricating carbonbased fully-inorganic perovskite solar cells. Sci China Mater, 2018, 61: 73–79CrossRefGoogle Scholar
  76. 76.
    Chiang CH, Tseng ZL, Wu CG. Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process. J Mater Chem A, 2014, 2: 15897–15903CrossRefGoogle Scholar
  77. 77.
    Xiao Z, Bi C, Shao Y, et al. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ Sci, 2014, 7: 2619–2623CrossRefGoogle Scholar
  78. 78.
    Guo Q, Li C, Qiao W, et al. The growth of a CH3NH3PbI3 thin film using simplified close space sublimation for efficient and large dimensional perovskite solar cells. Energy Environ Sci, 2016, 9: 1486–1494CrossRefGoogle Scholar
  79. 79.
    Smith IC, Hoke ET, Solis-Ibarra D, et al. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew Chem, 2014, 126: 11414–11417CrossRefGoogle Scholar
  80. 80.
    Cortecchia D, Dewi HA, Yin J, et al. Lead-free MA2CuClxBr4–x hybrid perovskites. Inorg Chem, 2016, 55: 1044–1052CrossRefGoogle Scholar
  81. 81.
    Liang D, Peng Y, Fu Y, et al. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates. ACS Nano, 2016, 10: 6897–6904CrossRefGoogle Scholar
  82. 82.
    Li Y, Cooper JK, Liu W, et al. Defective TiO2 with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells. Nat Commun, 2016, 7: 12446CrossRefGoogle Scholar
  83. 83.
    Wang YK, Yuan ZC, Shi GZ, et al. Dopant-free spiro-triphenylamine/ fluorene as hole-transporting material for perovskite solar cells with enhanced efficiency and stability. Adv Funct Mater, 2016, 26: 1375–1381CrossRefGoogle Scholar
  84. 84.
    Zhang F, Yi C, Wei P, et al. A novel dopant-free triphenylamine based molecular “butterfly” hole-transport material for highly efficient and stable perovskite solar cells. Adv Energy Mater, 2016, 6: 1600401CrossRefGoogle Scholar
  85. 85.
    You J, Meng L, Song TB, et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat Nanotechnol, 2015, 11: 75–81CrossRefGoogle Scholar
  86. 86.
    Ma S, Qiao W, Cheng T, et al. Optical–electrical–chemical engineering of PEDOT:PSS by incorporation of hydrophobic nafion for efficient and stable perovskite solar cells. ACS Appl Mater Interfaces, 2018, 10: 3902–3911CrossRefGoogle Scholar
  87. 87.
    Li W, Zhang W, Van Reenen S, et al. Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification. Energy Environ Sci, 2016, 9: 490–498CrossRefGoogle Scholar
  88. 88.
    Ma Y, Deng K, Gu B, et al. Boosting Efficiency and Stability of Perovskite Solar Cells with CdS Inserted at TiO2 /Perovskite Interface. Adv Mater Interfaces, 2016, 3: 1600729CrossRefGoogle Scholar
  89. 89.
    Ye QQ, Wang ZK, Li M, et al. N-type doping of fullerenes for planar perovskite solar cells. ACS Energy Lett, 2018, 3: 875–882CrossRefGoogle Scholar
  90. 90.
    Saliba M, Matsui T, Domanski K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354: 206–209CrossRefGoogle Scholar
  91. 91.
    Liao JF, Rao HS, Chen BX, et al. Dimension engineering on cesium lead iodide for efficient and stable perovskite solar cells. J Mater Chem A, 2017, 5: 2066–2072CrossRefGoogle Scholar
  92. 92.
    Cao DH, Stoumpos CC, Yokoyama T, et al. Thin films and solar cells based on semiconducting two-dimensional ruddlesden–popper (CH3(CH2)3NH3)2(CH3NH3)n−1SnnI3n+1 Perovskites. ACS Energy Lett, 2017, 2: 982–990CrossRefGoogle Scholar
  93. 93.
    Cohen BE, Wierzbowska M, Etgar L. High efficiency and high open circuit voltage in quasi 2D perovskite based solar cells. Adv Funct Mater, 2017, 27: 1604733CrossRefGoogle Scholar
  94. 94.
    Hamaguchi R, Yoshizawa-Fujita M, Miyasaka T, et al. Formamidine and cesium-based quasi-two-dimensional perovskites as photovoltaic absorbers. Chem Commun, 2017, 53: 4366–4369CrossRefGoogle Scholar
  95. 95.
    Yao K, Wang X, Xu Y, et al. A general fabrication procedure for efficient and stable planar perovskite solar cells: Morphological and interfacial control by in-situ-generated layered perovskite. Nano Energy, 2015, 18: 165–175CrossRefGoogle Scholar
  96. 96.
    Wang F, Geng W, Zhou Y, et al. Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and airstable photovoltaic cells. Adv Mater, 2016, 28: 9986–9992CrossRefGoogle Scholar
  97. 97.
    Cho KT, Grancini G, Lee Y, et al. Selective growth of layered perovskites for stable and efficient photovoltaics. Energy Environ Sci, 2018, 11: 952–959CrossRefGoogle Scholar
  98. 98.
    Cho H, Jeong SH, Park MH, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 350: 1222–1225CrossRefGoogle Scholar
  99. 99.
    Tan ZK, Moghaddam RS, Lai ML, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol, 2014, 9: 687–692CrossRefGoogle Scholar
  100. 100.
    Li G, Tan ZK, Di D, et al. Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix. Nano Lett, 2015, 15: 2640–2644CrossRefGoogle Scholar
  101. 101.
    Sadhanala A, Ahmad S, Zhao B, et al. Blue-green color tunable solution processable organolead chloride–bromide mixed halide perovskites for optoelectronic applications. Nano Lett, 2015, 15: 6095–6101CrossRefGoogle Scholar
  102. 102.
    Gong X, Yang Z, Walters G, et al. Highly efficient quantum dot near-infrared light-emitting diodes. Nat Photon, 2016, 10: 253–257CrossRefGoogle Scholar
  103. 103.
    Wang J, Wang N, Jin Y, et al. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Adv Mater, 2015, 27: 2311–2316CrossRefGoogle Scholar
  104. 104.
    Ling Y, Yuan Z, Tian Y, et al. Bright light-emitting diodes based on organometal halide perovskite nanoplatelets. Adv Mater, 2016, 28: 305–311CrossRefGoogle Scholar
  105. 105.
    Xing J, Yan F, Zhao Y, et al. High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles. ACS Nano, 2016, 10: 6623–6630CrossRefGoogle Scholar
  106. 106.
    Yang X, Zhang X, Deng J, et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat Commun, 2018, 9: 570CrossRefGoogle Scholar
  107. 107.
    Mitzi DB, Chondroudis K, Kagan CR. Organic-inorganic electronics. IBM J Res Dev, 2001, 45: 29–45CrossRefGoogle Scholar
  108. 108.
    Gauthron K, Lauret JS, Doyennette L, et al. Optical spectroscopy of two-dimensional layered (C6H5C2H4NH3)2-PbI4 perovskite. Opt Express, 2010, 18: 5912–5919CrossRefGoogle Scholar
  109. 109.
    Era M, Morimoto S, Tsutsui T, et al. Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4. Appl Phys Lett, 1994, 65: 676–678CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shuang Ma (马爽)
    • 1
  • Molang Cai (蔡墨朗)
    • 2
  • Tai Cheng (程泰)
    • 1
  • Xihong Ding (丁希宏)
    • 1
  • Xiaoqiang Shi (时小强)
    • 1
  • Ahmed Alsaedi
    • 4
  • Tasawar Hayat
    • 3
    • 4
  • Yong Ding (丁勇)
    • 1
    Email author
  • Zhan’ao Tan (谭占鳌)
    • 1
    Email author
  • Songyuan Dai (戴松元)
    • 1
    • 4
    Email author
  1. 1.Beijing Key Laboratory of Novel Thin-Film Solar Cells, Beijing Key Laboratory of Energy Safety and Clean UtilizationNorth China Electric Power UniversityBeijingChina
  2. 2.Center for Green Research on Energy and Environmental MaterialsNational Institute for Materials ScienceTsukubaJapan
  3. 3.Department of MathematicsQuaid-I-Azam UniversityIslamabadPakistan
  4. 4.NAAM Research Group, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations