Science China Materials

, Volume 61, Issue 8, pp 1027–1032 | Cite as

Quantum-confined superfluid: From nature to artificial

  • Liping Wen (闻利平)
  • Xiqi Zhang (张锡奇)
  • Ye Tian (田野)
  • Lei Jiang (江雷)Email author


Biological ion channels show that ultrafast ions and molecules transmission are in a quantum way of single molecular or ionic chain with a certain number of molecules or ions, and we define it as “quantum-confined superfluidics” (QSF). This ordered ultrafast flow in the confined channel can be considered as “quantum tunneling fluidics effect” with a “tunneling distance”, which is corresponding to the period of QSF. Recent research demonstrated that artificial biomimetic nanochannels also showed the phenomenon of QSF, such as ion and water channels. The introduction of QSF concept in the fields of chemistry and biology may create significant impact. As for chemistry, the QSF effect provides new ideas for accurate synthesis in organic, inorganic, polymer, etc. We believe the implementation of the idea of QSF will promote the development of QSF biochemistry, biophysics, bioinformatics and biomedical science.


quantum-confined superfluidics quantum tunneling fluidics effect ion channels artificial nanochannels 

量子限域超流体: 从自然到人工


生物孔道离子和分子以单链的量子方式快速传输, 我们将其定义为“量子限域超流体”. 限域孔道内离子和分子的有序超流被视为“量子隧穿流体效应”, 该”隧穿距离”与量子限域超流体的周期相一致. 近期研究表明仿生体系也存在量子限域超流现象, 例如离子通道和水通道内物质的快速传输. 通过把量子限域超流体概念引入化学领域, 将引发出精准化学合成, 即量子有机、 无机、 高分子反应等. 而引入到生物学领域, 将产生量子超流的生物化学、 生物物理、 生物信息学以及生物医学等. 在此基础上, 也将产生其他的新科学和新技术.



This work was supported by the National Key R&D Program of China (2017YFA0206900), and the National Natural Science Foundation of China (21625303).


  1. 1.
    Kapitza P. Viscosity of liquid helium below the λ-point. Nature, 1938, 141: 74CrossRefGoogle Scholar
  2. 2.
    Allen JF, Misener AD. Flow of liquid helium II. Nature, 1938, 141: 75CrossRefGoogle Scholar
  3. 3.
    Allen JF, Misener AD. The properties of flow of liquid He II. Proc R Soc A-Math Phys Eng Sci, 1939, 172: 467–491CrossRefGoogle Scholar
  4. 4.
    Hille B. Ionic channels of excitable membranes, 3rd Edition. Sunderland: Sinauer Associates, 2001Google Scholar
  5. 5.
    Taruno A, Vingtdeux V, Ohmoto M, et al. CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature, 2013, 495: 223–226CrossRefGoogle Scholar
  6. 6.
    Xu J, Lavan DA. Designing artificial cells to harness the biological ion concentration gradient. Nat Nanotechnol, 2008, 3: 666–670CrossRefGoogle Scholar
  7. 7.
    Sansom MSP, Shrivastava IH, Bright JN, et al. Potassium channels: structures, models, simulations. BioChim Biophysica Acta (BBA) - Biomembranes, 2002, 1565: 294–307CrossRefGoogle Scholar
  8. 8.
    Majumder M, Chopra N, Andrews R, et al. Enhanced flow in carbon nanotubes. Nature, 2005, 438: 44–44CrossRefGoogle Scholar
  9. 9.
    Shi C, He Y, Hendriks K, et al. A single NaK channel conformation is not enough for non-selective ion conduction. Nat Commun, 2018, 9: 717CrossRefGoogle Scholar
  10. 10.
    Doyle DA, Morais Cabral J, Pfuetzner RA, et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science, 1998, 280: 69–77CrossRefGoogle Scholar
  11. 11.
    MacKinnon R. Potassium channels and the atomic basis of selective ion conduction (Nobel Lecture). Angew Chem Int Ed, 2004, 43: 4265–4277CrossRefGoogle Scholar
  12. 12.
    Tadross MR, Dick IE, Yue DT. Mechanism of local and global Ca2+ sensing by calmodulin in complex with a Ca2+ channel. Cell, 2008, 133: 1228–1240CrossRefGoogle Scholar
  13. 13.
    Xia F, Guo W, Mao Y, et al. Gating of single synthetic nanopores by proton-driven DNA molecular motors. J Am Chem Soc, 2008, 130: 8345–8350CrossRefGoogle Scholar
  14. 14.
    Xiao K, Xie G, Zhang Z, et al. Enhanced stability and controllability of an ionic diode based on funnel-shaped nanochannels with an extended critical region. Adv Mater, 2016, 28: 3345–3350CrossRefGoogle Scholar
  15. 15.
    Holt JK, Gyu Park H, Wang Y, et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science, 2006, 312: 1034–1037CrossRefGoogle Scholar
  16. 16.
    Secchi E, Marbach S, Niguès A, et al. Massive radius-dependent flow slippage in carbon nanotubes. Nature, 2016, 537: 210–213CrossRefGoogle Scholar
  17. 17.
    Wu K, Chen Z, Li J, et al. Wettability effect on nanoconfined water flow. Proc Natl Acad Sci USA, 2017, 114: 3358–3363CrossRefGoogle Scholar
  18. 18.
    Hummer G, Rasaiah JC, Noworyta JP. Water conduction through the hydrophobic channel of a carbon nanotube. Nature, 2001, 414: 188–190CrossRefGoogle Scholar
  19. 19.
    Chen Q, Meng L, Li Q, et al. Water transport and purification in nanochannels controlled by asymmetric wettability. Small, 2011, 7: 2225–2231CrossRefGoogle Scholar
  20. 20.
    Zhu Z, Tian Y, Chen Y, et al. Superamphiphilic silicon wafer surfaces and applications for uniform polymer film fabrication. Angew Chem Int Ed, 2017, 56: 5720–5724CrossRefGoogle Scholar
  21. 21.
    Nair RR, Wu HA, Jayaram PN, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science, 2012, 335: 442–444CrossRefGoogle Scholar
  22. 22.
    Guo W, Cao L, Xia J, et al. Energy harvesting with single-ionselective nanopores: a concentration-gradient-driven nanofluidic power source. Adv Funct Mater, 2010, 20: 1339–1344CrossRefGoogle Scholar
  23. 23.
    Feng J, Graf M, Liu K, et al. Single-layer MoS2 nanopores as nanopower generators. Nature, 2016, 536: 197–200CrossRefGoogle Scholar
  24. 24.
    Siria A, Poncharal P, Biance AL, et al. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature, 2013, 494: 455–458CrossRefGoogle Scholar
  25. 25.
    Zhang Z, Kong XY, Xiao K, et al. Engineered asymmetric heterogeneous membrane: a concentration-gradient-driven energy harvesting device. J Am Chem Soc, 2015, 137: 14765–14772CrossRefGoogle Scholar
  26. 26.
    Zhang Z, Sui X, Li P, et al. Ultrathin and ion-selective Janus membranes for high-performance osmotic energy conversion. J Am Chem Soc, 2017, 139: 8905–8914CrossRefGoogle Scholar
  27. 27.
    Gao J, Guo W, Feng D, et al. High-performance ionic diode membrane for salinity gradient power generation. J Am Chem Soc, 2014, 136: 12265–12272CrossRefGoogle Scholar
  28. 28.
    Vabulas RM, Hartl FU. Protein synthesis upon acute nutrient restriction relies on proteasome function. Science, 2005, 310: 1960–1963CrossRefGoogle Scholar
  29. 29.
    Kosuri S, Church GM. Large-scale de novo DNA synthesis: technologies and applications. Nat Methods, 2014, 11: 499–507CrossRefGoogle Scholar
  30. 30.
    Kaita S, Yamanaka M, Horiuchi AC, et al. Butadiene polymerization catalyzed by lanthanide metallocene−alkylaluminum complexes with cocatalysts: metal-dependent control of 1,4-cis/trans stereoselectivity and molecular weight. Macromolecules, 2006, 39: 1359–1363CrossRefGoogle Scholar
  31. 31.
    Pan X, Fan Z, Chen W, et al. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat Mater, 2007, 6: 507–511CrossRefGoogle Scholar
  32. 32.
    Kageyama K. Extrusion polymerization: catalyzed synthesis of crystalline linear polyethylene nanofibers within a mesoporous silica. Science, 1999, 285: 2113–2115CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Liping Wen (闻利平)
    • 1
    • 2
  • Xiqi Zhang (张锡奇)
    • 1
  • Ye Tian (田野)
    • 2
    • 3
  • Lei Jiang (江雷)
    • 1
    • 2
    • 4
    Email author
  1. 1.Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing Institute of ChemistryChinese Academy of SciencesBeijingChina
  4. 4.Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingChina

Personalised recommendations