Science China Materials

, Volume 62, Issue 1, pp 130–137 | Cite as

Mn2+-activated calcium fluoride nanoprobes for time-resolved photoluminescence biosensing

  • Jiaojiao Wei (委娇娇)
  • Wei Zheng (郑伟)Email author
  • Xiaoying Shang (商晓颖)
  • Renfu Li (李仁富)
  • Ping Huang (黄萍)
  • Yan Liu
  • Zhongliang Gong (宫仲亮)
  • Shanyong Zhou (周山勇)
  • Zhuo Chen (陈卓)
  • Xueyuan Chen (陈学元)Email author


Time-resolved (TR) photoluminescence (PL) technique has shown great promise in ultrasensitive biodetection and high-resolution bioimaging. Hitherto, almost all the TRPL bioprobes are based on the parity-forbidden f→f transition of lanthanide ions. Herein, we report TRPL biosensing by taking advantage of the d→d transition of transition metal (TM) Mn2+ ion. We demonstrate that the Förster resonance energy transfer (FRET) signal can be distinguished from that of radiative reabsorption process through measuring the PL lifetime of Mn2+, thus establishing a reliable method for Mn2+ in homogeneous TR-FRET biodetection. We also demonstrate the biotin receptor-targeted cancer cell imaging by utilizing biotinylated CaF2:Ce,Mn nanoprobes. Furthermore, we show in a proof-of-concept experiment the application of the long-lived PL of Mn2+ for TRPL bioimaging through the burst shot with a cell phone. These findings provide a general approach for exploiting the long-lived PL of TM ions for TRPL biosensing, thereby opening up a new avenue for the exploration of novel and versatile applications of TM ions.


manganese time-resolved photoluminescence energy transfer biodetection bioimaging 



时间分辨荧光探测技术在超灵敏生物检测和高分辨生物成像领域具有广泛的应用前景. 目前报道的时间分辨荧光生物探针大都是利用稀土离子4fN电子组态间的禁戒跃迁发光. 本文报道了基于过渡金属Mn2+离子d→d禁戒跃迁发光的时间分辨荧光生物分析. 我们证明通过测试Mn2+的荧光寿命变化可以将荧光共振能量传递与辐射再吸收信号区分开来, 从而为Mn2+发光在时间分辨荧光共振能量传递均相生物检测的应用提供了一种可靠的分析方法. 利用生物素化的CaF2:Ce,Mn纳米荧光探针, 我们还实现了对生物素受体过表达癌细胞的靶向荧光成像. 通过概念性验证并利用手机连拍功能, 我们证明了Mn2+的长寿命发光可用于时间分辨荧光生物成像. 这些研究结果为过渡金属长寿命发光在时间分辨荧光生物分析领域的应用提供了普适方法, 也为过渡金属离子的新型、 多功能用途开辟了新的方向.



This work is supported by National Program on Key Basic Research Project (973 Program, 2014CB845605), the Strategic Priority Research Program of the CAS (XDB20000000), the National Natural Science Foundation of China (21325104, 11774345, 21771185, 21501180 and 21650110462), the CAS/SAFEA International Partnership Program for Creative Re-search Teams, the Youth Innovation Promotion Association (2016277) and the Chunmiao Project of Haixi Institutes of the CAS (CMZX-2016-002), and Natural Science Foundation of Fujian Province (2017I0018 and 2017J05095).

Supplementary material

40843_2018_9288_MOESM1_ESM.pdf (2.3 mb)
Mn2+-activated calcium fluoride nanoprobes for time-resolved photoluminescence biosensing


  1. 1.
    Siitari H, Hemmilä I, Soini E, et al. Detection of hepatitis B surface antigen using time-resolved fluoroimmunoassay. Nature, 1983, 301: 258–260CrossRefGoogle Scholar
  2. 2.
    Connally RE, Piper JA. Time-gated luminescence microscopy. Ann New York Acad Sci, 2008, 1130: 106–116CrossRefGoogle Scholar
  3. 3.
    Jin D, Piper JA, Leif RC, et al. Time-gated flow cytometry: an ultrahigh selectivity method to recover ultra-rare-event μ-targets in high-background biosamples. J Biomed Opt, 2009, 14: 024023CrossRefGoogle Scholar
  4. 4.
    Zheng W, Tu D, Huang P, et al. Time-resolved luminescent biosensing based on inorganic lanthanide-doped nanoprobes. Chem Commun, 2015, 51: 4129–4143CrossRefGoogle Scholar
  5. 5.
    Song B, Ye Z, Yang Y, et al. Background-free in-vivo imaging of vitamin C using time-gateable responsive probe. Sci Rep, 2015, 5: 14194CrossRefGoogle Scholar
  6. 6.
    Bünzli JCG, Piguet C. Taking advantage of luminescent lanthanide ions. Chem Soc Rev, 2005, 34: 1048–1077CrossRefGoogle Scholar
  7. 7.
    Yuan J, Wang G. Lanthanide-based luminescence probes and timeresolved luminescence bioassays. TrAC Trends Anal Chem, 2006, 25: 490–500CrossRefGoogle Scholar
  8. 8.
    Bouzigues C, Gacoin T, Alexandrou A. Biological applications of rare-earth based nanoparticles. ACS Nano, 2011, 5: 8488–8505CrossRefGoogle Scholar
  9. 9.
    Huang P, Tu D, Zheng W, et al. Inorganic lanthanide nanoprobes for background-free luminescent bioassays. Sci China Mater, 2015, 58: 156–177CrossRefGoogle Scholar
  10. 10.
    Zheng W, Zhou S, Xu J, et al. Ultrasensitive luminescent in vitro detection for tumor markers based on inorganic lanthanide nanobioprobes. Adv Sci, 2016, 3: 1600197CrossRefGoogle Scholar
  11. 11.
    Klick CC, Schulman JH. On the luminescence of divalent manganese in solids. J Opt Soc Am, 1952, 42: 910–916CrossRefGoogle Scholar
  12. 12.
    He Y, Wang HF, Yan XP. Exploring Mn-doped ZnS quantum dots for the room-temperature phosphorescence detection of enoxacin in biological fluids. Anal Chem, 2008, 80: 3832–3837CrossRefGoogle Scholar
  13. 13.
    Zhao Q, Huang C, Li F. Phosphorescent heavy-metal complexes for bioimaging. Chem Soc Rev, 2011, 40: 2508–2524CrossRefGoogle Scholar
  14. 14.
    Deng X, Dai Y, Liu J, et al. Multifunctional hollow CaF2:Yb3+/Er3+/ Mn2+-poly(2-Aminoethyl methacrylate) microspheres for Pt(IV) pro-drug delivery and tri-modal imaging. Biomaterials, 2015, 50: 154–163CrossRefGoogle Scholar
  15. 15.
    Liu X, Wang Y, Li X, et al. Binary temporal upconversion codes of Mn2+-activated nanoparticles for multilevel anti-counterfeiting. Nat Commun, 2017, 8: 899CrossRefGoogle Scholar
  16. 16.
    Zhu D, Chen Y, Jiang L, et al. Manganese-doped ZnSe quantum dots as a probe for time-resolved fluorescence detection of 5-fluorouracil. Anal Chem, 2011, 83: 9076–9081CrossRefGoogle Scholar
  17. 17.
    Blasse G, Grabmaier BC. Luminescent Materials. Berlin: Springer- Verlag, 1994CrossRefGoogle Scholar
  18. 18.
    Alcalá R, Alonso PJ, Lalinde G, et al. Manganese centers in low temperature X-irradiated CaF2:Mn. Phys Stat Sol b, 1980, 98: 315–322CrossRefGoogle Scholar
  19. 19.
    McKeever SWS, Brown MD, Abbundi RJ, et al. Characterization of optically active sites in CaF2:Ce,Mn from optical spectra. J Appl Phys, 1986, 60: 2505–2510CrossRefGoogle Scholar
  20. 20.
    G UC. On the Ce–Mn clustering in CaF2 in which the Ce3+→Mn2+ energy transfer occurs. J Phys-Condens Matter, 2003, 15: 3821–3830CrossRefGoogle Scholar
  21. 21.
    Lundin K, Blomberg K, Nordström T, et al. Development of a time-resolved fluorescence resonance energy transfer assay (cell trfret) for protein detection on intact cells. Anal Biochem, 2001, 299: 92–97CrossRefGoogle Scholar
  22. 22.
    Wang L, Tan W. Multicolor FRET silica nanoparticles by single wavelength excitation. Nano Lett, 2006, 6: 84–88CrossRefGoogle Scholar
  23. 23.
    Shen J, Sun LD, Zhu JD, et al. Biocompatible bright YVO4:Eu nanoparticles as versatile optical bioprobes. Adv Funct Mater, 2010, 20: 3708–3714CrossRefGoogle Scholar
  24. 24.
    Li Z, Zhang Y, Huang L, et al. Nanoscale “fluorescent stone”: luminescent calcium fluoride nanoparticles as theranostic platforms. Theranostics, 2016, 6: 2380–2393CrossRefGoogle Scholar
  25. 25.
    Kaiser U, Sabir N, Carrillo-Carrion C, et al. Förster resonance energy transfer mediated enhancement of the fluorescence lifetime of organic fluorophores to the millisecond range by coupling to Mn-doped CdS/ZnS quantum dots. Nanotechnology, 2016, 27: 055101CrossRefGoogle Scholar
  26. 26.
    Qiao J, Xia Z, Zhang Z, et al. Near UV-pumped yellow-emitting Sr9MgLi(PO4)7:Eu2+ phosphor for white-light LEDs. Sci China Mater, 2018, 61: 985–992CrossRefGoogle Scholar
  27. 27.
    Yu M, Qu Y, Pan K, et al. Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the synergetic effect of NaYF4:Er3+/Yb3+ and g-C3N4. Sci China Mater, 2017, 60: 228–238CrossRefGoogle Scholar
  28. 28.
    Wang D, Wang R, Liu L, et al. Down-shifting luminescence of water soluble NaYF4:Eu3+@Ag core-shell nanocrystals for fluorescence turn-on detection of glucose. Sci China Mater, 2017, 60: 68–74CrossRefGoogle Scholar
  29. 29.
    Kochubey VI, Konyukhova YG, Zabenkov IV, et al. Accounting for scattering and reabsorption in the analysis of luminescence spectra of nanoparticles. Quantum Electron, 2011, 41: 335–339CrossRefGoogle Scholar
  30. 30.
    Anni M, Alemanno E, Creti A, et al. Interplay between amplified spontaneous emission, Forster resonant energy transfer, and selfabsorption in hybrid poly(9,9-dioctylfluorene)-CdSe/ZnS nanocrystal thin films. J Phys Chem A, 2010, 114: 2086–2090CrossRefGoogle Scholar
  31. 31.
    Achatz DE, Meier RJ, Fischer LH, et al. Luminescent sensing of oxygen using a quenchable probe and upconverting nanoparticles. Angew Chem Int Ed, 2011, 50: 260–263CrossRefGoogle Scholar
  32. 32.
    Wang G, Peng Q, Li Y. Upconversion luminescence of monodisperse CaF2:Yb3+/Er3+ nanocrystals. J Am Chem Soc, 2009, 131: 14200–14201CrossRefGoogle Scholar
  33. 33.
    Zheng W, Zhou S, Chen Z, et al. Sub-10 nm lanthanide-doped CaF2 nanoprobes for time-resolved luminescent biodetection. Angew Chem Int Ed, 2013, 52: 6671–6676CrossRefGoogle Scholar
  34. 34.
    Bogdan N, Vetrone F, Ozin GA, et al. Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide- doped upconverting nanoparticles. Nano Lett, 2011, 11: 835–840CrossRefGoogle Scholar
  35. 35.
    Chen X, Jin L, Sun T, et al. Energy migration upconversion in Ce (III)-doped heterogeneous core−shell−shell nanoparticles. Small, 2017, 13: 1701479CrossRefGoogle Scholar
  36. 36.
    Senden T, Rabouw FT, Meijerink A. Photonic effects on the radiative decay rate and luminescence quantum yield of doped nanocrystals. ACS Nano, 2015, 9: 1801–1808CrossRefGoogle Scholar
  37. 37.
    Huang P, Zheng W, Zhou S, et al. Lanthanide-doped LiLuF4 upconversion nanoprobes for the detection of disease biomarkers. Angew Chem Int Ed, 2014, 53: 1252–1257CrossRefGoogle Scholar
  38. 38.
    Zhou S, Zheng W, Chen Z, et al. Dissolution-enhanced luminescent bioassay based on inorganic lanthanide nanoparticles. Angew Chem Int Ed, 2014, 108: 12498–12502Google Scholar
  39. 39.
    Su Q, Feng W, Yang D, et al. Resonance energy transfer in upconversion nanoplatforms for selective biodetection. Acc Chem Res, 2017, 50: 32–40CrossRefGoogle Scholar
  40. 40.
    Tu D, Liu L, Ju Q, et al. Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals. Angew Chem Int Ed, 2011, 50: 6306–6310CrossRefGoogle Scholar
  41. 41.
    Russell-Jones G, McTavish K, McEwan J, et al. Vitamin-mediated targeting as a potential mechanism to increase drug uptake by tumours. J InOrg Biochem, 2004, 98: 1625–1633CrossRefGoogle Scholar
  42. 42.
    Chen S, Zhao X, Chen J, et al. Mechanism-based tumor-targeting drug delivery system. Validation of efficient vitamin receptormediated endocytosis and drug release. Bioconjugate Chem, 2010, 21: 979–987Google Scholar
  43. 43.

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jiaojiao Wei (委娇娇)
    • 1
    • 2
  • Wei Zheng (郑伟)
    • 1
    • 2
    Email author
  • Xiaoying Shang (商晓颖)
    • 1
  • Renfu Li (李仁富)
    • 1
  • Ping Huang (黄萍)
    • 1
  • Yan Liu
    • 1
  • Zhongliang Gong (宫仲亮)
    • 1
  • Shanyong Zhou (周山勇)
    • 1
  • Zhuo Chen (陈卓)
    • 1
  • Xueyuan Chen (陈学元)
    • 1
    • 2
    Email author
  1. 1.CAS Key Laboratory of Design and Assembly of Functional Nanostructures, State Key Laboratory of Structural Chemistry, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina
  2. 2.College of Materials Science and EngineeringFujian Normal UniversityFuzhouChina

Personalised recommendations