Science China Materials

, Volume 62, Issue 1, pp 43–53 | Cite as

Unconventional solution-phase epitaxial growth of organic-inorganic hybrid perovskite nanocrystals on metal sulfide nanosheets

  • Zhipeng Zhang (张志鹏)
  • Fangfang Sun (孙方方)
  • Zhaohua Zhu (朱兆华)
  • Jie Dai (戴杰)
  • Kai Gao (高锴)
  • Qi Wei (魏琪)
  • Xiaotong Shi (石晓桐)
  • Qian Sun (孙倩)
  • Yan Yan (闫岩)
  • Hai Li (李海)
  • Haidong Yu (于海东)
  • Guichuan Xing (邢贵川)Email author
  • Xiao Huang (黄晓)Email author
  • Wei Huang (黄维)Email author


Epitaxial heterostructures based on organic-inorganic hybrid perovskites and two-dimensional materials hold great promises in optoelectronics, but they have been prepared only via solid-state methods that restricted their practical applications. Herein, we report cubic-phased MAPbBr3 (MA=CH3NH3+) nanocrystals were epitaxially deposited on trigonal/hexagonal-phased MoS2 nanosheets in solution by facilely tuning the solvation conditions. In spite of the mismatched lattice symmetry between the square MAPbBr3 (001) overlayer and the hexagonal MoS2 (001) substrate, two different aligning directions with lattice mismatch of as small as 1% were observed based on the domainmatching epitaxy. This was realized most likely due to the flexible nature and absence of surface dangling bonds of MoS2 nanosheets. The formation of the epitaxial interface affords an effective energy transfer from MAPbBr3 to MoS2, and as a result, paper-based photodetectors facilely fabricated from these solution-dispersible heterostructures showed better performance compared to those based on MoS2 or MAPbBr3 alone. In addition to the improved energy transfer and light adsorption, the use of MoS2 nanosheets provided flexible and continuous substrates to connect the otherwise discrete MAPbBr3 nanocrystals and achieved the better film forming ability. Our work suggests that the scalable preparation of heterostructures based on organic-inorganic hybrid perovskites and 2D materials via solution-phase epitaxy may bring about more opportunities for expanding their optoelectronic applications.


organic-inorganic hybrid perovskite transition metal chalcogenide epitaxial growth paper-based photodetector 



基于外延异质结构的有机-无机杂化钙钛矿/二维纳米片复合材料在光电领域具有很好的应用前景, 但目前使用的固相制备方法大大限制了这一目标的实现. 我们通过精细调节溶剂环境, 成功利用外延沉积的方式实现了在三角/六方相MoS2纳米片表面生长立方相MAPbBr3(MA=CH3NH3+)钙钛矿纳米晶. 虽然MAPbBr3与MoS2存在较大的晶格不匹配度, 但是由于MoS2纳米片性质柔软且表面缺失悬挂键, 可以在两条不同方向上观察到较高容忍度(∼1%错位)的外延生长关系. 这种外延界面的形成有利于MAPbBr3与MoS2之间有效的能量转移, 因此基于MAPbBr3/MoS2异质结的纸质器件与MAPbBr3或MoS2器件相比具有更优异的光电性能. 此外, 除了提高光吸收能力和能量传递, MoS2纳米片的存在还为离散的MAPbBr3纳米晶提供柔性和连续的基底, 从而改善了MAPbBr3纳米晶粒的成膜能力. 这种液相外延法可用于高性能的有机无机杂化钙钛矿与二维材料的异质结构材料的大规模制备, 将推动异质结构材料在光电领域的广泛使用.



This research was supported by the National Natural Science Foundation of China (51322202), and the Young 1000 Talents Global Recruitment Program of China. Xing G acknowledges the financial support from Macau Science and Technology Development Fund (FDCT-116/2016/A3 and FDCT-091/2017/A2), Research Grant (SRG2016-00087-FST) from the University of Macau, the Natural Science Foundation of China (91733302, 61605073 and 2015CB932200), and the Young 1000 Talents Global Recruitment Program of China.

Supplementary material

40843_2018_9274_MOESM1_ESM.pdf (2.2 mb)
Unconventional solution-phase epitaxial growth of organic-inorganic hybrid perovskite nanocrystals on metal sulfide nanosheets


  1. 1.
    Chhowalla M, Shin HS, Eda G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem, 2013, 5: 263–275CrossRefGoogle Scholar
  2. 2.
    Huang X, Zeng Z, Zhang H. Metal dichalcogenide nanosheets: preparation, properties and applications. Chem Soc Rev, 2013, 42: 1934–1946CrossRefGoogle Scholar
  3. 3.
    Geim AK, Novoselov KS. The rise of graphene. Nat Mater, 2007, 6: 183–191CrossRefGoogle Scholar
  4. 4.
    Karunadasa HI, Montalvo E, Sun Y, et al. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science, 2012, 335: 698–702CrossRefGoogle Scholar
  5. 5.
    Yu WJ, Li Z, Zhou H, et al. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat Mater, 2013, 12: 246–252CrossRefGoogle Scholar
  6. 6.
    Yu WJ, Liu Y, Zhou H, et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat Nanotechnol, 2013, 8: 952–958CrossRefGoogle Scholar
  7. 7.
    Amani M, Lien DH, Kiriya D, et al. Near-unity photoluminescence quantum yield in MoS2. Science, 2015, 350: 1065–1068CrossRefGoogle Scholar
  8. 8.
    Eda G, Maier SA. Two-dimensional crystals: managing light for optoelectronics. ACS Nano, 2013, 7: 5660–5665CrossRefGoogle Scholar
  9. 9.
    Zhang W, Chuu CP, Huang JK, et al. Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci Rep, 2014, 4: 3826CrossRefGoogle Scholar
  10. 10.
    Tan H, Xu W, Sheng Y, et al. Lateral graphene-contacted vertically stacked WS2/MoS2 hybrid photodetectors with large gain. Adv Mater, 2017, 29: 1702917CrossRefGoogle Scholar
  11. 11.
    Lin J, Li H, Zhang H, et al. Plasmonic enhancement of photocurrent in MoS2 field-effect-transistor. Appl Phys Lett, 2013, 102: 203109CrossRefGoogle Scholar
  12. 12.
    Yu SH, Lee Y, Jang SK, et al. Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse. ACS Nano, 2014, 8: 8285–8291CrossRefGoogle Scholar
  13. 13.
    Esmaeili-Rad MR, Salahuddin S. High performance molybdenum disulfide amorphous silicon heterojunction photodetector. Sci Rep, 2013, 3: 2345CrossRefGoogle Scholar
  14. 14.
    Jariwala D, Sangwan VK, Wu CC, et al. Gate-tunable carbon nanotube-MoS2 heterojunction p-n diode. Proc Natl Acad Sci USA, 2013, 110: 18076–18080CrossRefGoogle Scholar
  15. 15.
    Noel NK, Stranks SD, Abate A, et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ Sci, 2014, 7: 3061–3068CrossRefGoogle Scholar
  16. 16.
    Jeon T, Kim SJ, Yoon J, et al. Hybrid perovskites: effective crystal growth for optoelectronic applications. Adv Energy Mater, 2017, 7: 1602596CrossRefGoogle Scholar
  17. 17.
    Sum TC, Mathews N. Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy Environ Sci, 2014, 7: 2518–2534CrossRefGoogle Scholar
  18. 18.
    Yang WS, Noh JH, Jeon NJ, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348: 1234–1237CrossRefGoogle Scholar
  19. 19.
    Chiang CH, Nazeeruddin MK, Grätzel M, et al. The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells. Energy Environ Sci, 2017, 10: 808–817CrossRefGoogle Scholar
  20. 20.
    Saliba M, Matsui T, Domanski K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354: 206–209CrossRefGoogle Scholar
  21. 21.
    Xing G, Mathews N, Sun S, et al. Long-range balanced electronand hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342: 344–347CrossRefGoogle Scholar
  22. 22.
    Stranks SD, Eperon GE, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342: 341–344CrossRefGoogle Scholar
  23. 23.
    Green MA, Ho-Baillie A, Snaith HJ. The emergence of perovskite solar cells. Nat Photonics, 2014, 8: 506–514CrossRefGoogle Scholar
  24. 24.
    Schmidt LC, Pertegás A, González-Carrero S, et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J Am Chem Soc, 2014, 136: 850–853CrossRefGoogle Scholar
  25. 25.
    Pathak S, Sakai N, Wisnivesky Rocca Rivarola F, et al. Perovskite crystals for tunable white light emission. Chem Mater, 2015, 27: 8066–8075CrossRefGoogle Scholar
  26. 26.
    Gonzalez-Carrero S, Galian RE, Pérez-Prieto J. Maximizing the emissive properties of CH3NH3PbBr3 perovskite nanoparticles. J Mater Chem A, 2015, 3: 9187–9193CrossRefGoogle Scholar
  27. 27.
    Huang H, Zhao F, Liu L, et al. Emulsion synthesis of size-tunable CH3NH3PbBr3 quantum dots: an alternative route toward efficient light-emitting diodes. ACS Appl Mater Interfaces, 2015, 7: 28128–28133CrossRefGoogle Scholar
  28. 28.
    Zhu F, Men L, Guo Y, et al. Shape evolution and single particle luminescence of organometal halide perovskite nanocrystals. ACS Nano, 2015, 9: 2948–2959CrossRefGoogle Scholar
  29. 29.
    Jang DM, Kim DH, Park K, et al. Ultrasound synthesis of lead halide perovskite nanocrystals. J Mater Chem C, 2016, 4: 10625–10629CrossRefGoogle Scholar
  30. 30.
    Xing J, Yan F, Zhao Y, et al. High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles. ACS Nano, 2016, 10: 6623–6630CrossRefGoogle Scholar
  31. 31.
    Im JH, Lee CR, Lee JW, et al. 6.5% Efficient perovskite quantumdot-sensitized solar cell. Nanoscale, 2011, 3: 4088–4093CrossRefGoogle Scholar
  32. 32.
    Niu L, Liu X, Cong C, et al. Controlled synthesis of organic/inorganic van der Waals solid for tunable light-matter interactions. Adv Mater, 2015, 27: 7800–7808CrossRefGoogle Scholar
  33. 33.
    Cheng HC, Wang G, Li D, et al. van der Waals heterojunction devices based on organohalide perovskites and two-dimensional materials. Nano Lett, 2015, 16: 367–373CrossRefGoogle Scholar
  34. 34.
    Lu J, Carvalho A, Liu H, et al. Hybrid bilayer WSe2-CH3NH3PbI3 organolead halide perovskite as a high-performance photodetector. Angew Chem Int Ed, 2016, 55: 11945–11949CrossRefGoogle Scholar
  35. 35.
    Ma C, Shi Y, Hu W, et al. Heterostructured WS2/CH3NH3PbI3 photoconductors with suppressed dark current and enhanced photodetectivity. Adv Mater, 2016, 28: 3683–3689CrossRefGoogle Scholar
  36. 36.
    Kang DH, Pae SR, Shim J, et al. An ultrahigh-performance photodetector based on a perovskite-transition-metal-dichalcogenide hybrid structure. Adv Mater, 2016, 28: 7799–7806CrossRefGoogle Scholar
  37. 37.
    Wang Y, Fullon R, Acerce M, et al. Solution-processed MoS2/organolead trihalide perovskite photodetectors. Adv Mater, 2017, 29: 1603995CrossRefGoogle Scholar
  38. 38.
    Zhang F, Zhong H, Chen C, et al. Brightly luminescent and colortunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano, 2015, 9: 4533–4542CrossRefGoogle Scholar
  39. 39.
    Zhang F, Huang S, Wang P, et al. Colloidal synthesis of air-stable CH3NH3PbI3 quantum dots by gaining chemical insight into the solvent effects. Chem Mater, 2017, 29: 3793–3799CrossRefGoogle Scholar
  40. 40.
    Zeng Z, Yin Z, Huang X, et al. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew Chem Int Ed, 2011, 50: 11093–11097CrossRefGoogle Scholar
  41. 41.
    Li H, Wu J, Yin Z, et al. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc Chem Res, 2014, 47: 1067–1075CrossRefGoogle Scholar
  42. 42.
    Heising J, Kanatzidis MG. Exfoliated and restacked MoS2 and WS2: ionic or neutral species? Encapsulation and ordering of hard Electropositive cations. J Am Chem Soc, 1999, 121: 11720–11732CrossRefGoogle Scholar
  43. 43.
    Peng W, Wang L, Murali B, et al. Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells. Adv Mater, 2016, 28: 3383–3390CrossRefGoogle Scholar
  44. 44.
    Brunetti B, Cavallo C, Ciccioli A, et al. On the thermal and thermodynamic (in)stability of methylammonium lead halide perovskites. Sci Rep, 2016, 6: 31896CrossRefGoogle Scholar
  45. 45.
    Kappera R, Voiry D, Yalcin SE, et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat Mater, 2014, 13: 1128–1134CrossRefGoogle Scholar
  46. 46.
    Eda G, Yamaguchi H, Voiry D, et al. Photoluminescence from chemically exfoliated MoS2. Nano Lett, 2011, 11: 5111–5116CrossRefGoogle Scholar
  47. 47.
    Voiry D, Salehi M, Silva R, et al. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett, 2013, 13: 6222–6227CrossRefGoogle Scholar
  48. 48.
    Narayan J, Larson BC. Domain epitaxy: A unified paradigm for thin film growth. J Appl Phys, 2003, 93: 278–285CrossRefGoogle Scholar
  49. 49.
    Huang X, Zeng Z, Bao S, et al. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat Commun, 2013, 4: 1444CrossRefGoogle Scholar
  50. 50.
    Lin Z, Yin A, Mao J, et al. Scalable solution-phase epitaxial growth of symmetry-mismatched heterostructures on two-dimensional crystal soft template. Sci Adv, 2016, 2: e1600993CrossRefGoogle Scholar
  51. 51.
    Jin M, Zhang H, Wang J, et al. Copper can still be epitaxially deposited on palladium nanocrystals to generate core–shell nanocubes despite their large lattice mismatch. ACS Nano, 2012, 6: 2566–2573CrossRefGoogle Scholar
  52. 52.
    Fan FR, Liu DY, Wu YF, et al. Epitaxial growth of heterogeneous metal nanocrystals: from gold nano-octahedra to palladium and silver nanocubes. J Am Chem Soc, 2008, 130: 6949–6951CrossRefGoogle Scholar
  53. 53.
    Geim AK, Grigorieva IV. van der Waals heterostructures. Nature, 2013, 499: 419–425CrossRefGoogle Scholar
  54. 54.
    Schulz P, Edri E, Kirmayer S, et al. Interface energetics in organometal halide perovskite-based photovoltaic cells. Energy Environ Sci, 2014, 7: 1377–1381CrossRefGoogle Scholar
  55. 55.
    Yang D, Yang R, Zhang J, et al. High efficiency flexible perovskite solar cells using superior low temperature TiO2. Energy Environ Sci, 2015, 8: 3208–3214CrossRefGoogle Scholar
  56. 56.
    Fang H, Li J, Ding J, et al. An origami perovskite photodetector with spatial recognition ability. ACS Appl Mater Interfaces, 2017, 9: 10921–10928CrossRefGoogle Scholar
  57. 57.
    Lin CH, Tsai DS, Wei TC, et al. Highly deformable origami paper photodetector arrays. ACS Nano, 2017, 11: 10230–10235CrossRefGoogle Scholar
  58. 58.
    Cai C, Ma Y, Jeon J, et al. Epitaxial growth of large-grain NiSe films by solid-state reaction for high-responsivity photodetector arrays. Adv Mater, 2017, 29: 1606180CrossRefGoogle Scholar
  59. 59.
    Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol, 2013, 8: 497–501CrossRefGoogle Scholar
  60. 60.
    Stranks SD, Snaith HJ. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nanotechnol, 2015, 10: 391–402CrossRefGoogle Scholar
  61. 61.
    Fan X, Xu P, Zhou D, et al. Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion. Nano Lett, 2015, 15: 5956–5960CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhipeng Zhang (张志鹏)
    • 1
  • Fangfang Sun (孙方方)
    • 1
  • Zhaohua Zhu (朱兆华)
    • 1
  • Jie Dai (戴杰)
    • 1
  • Kai Gao (高锴)
    • 1
  • Qi Wei (魏琪)
    • 1
  • Xiaotong Shi (石晓桐)
    • 1
  • Qian Sun (孙倩)
    • 1
  • Yan Yan (闫岩)
    • 1
  • Hai Li (李海)
    • 1
  • Haidong Yu (于海东)
    • 1
  • Guichuan Xing (邢贵川)
    • 1
    • 2
    Email author
  • Xiao Huang (黄晓)
    • 1
    Email author
  • Wei Huang (黄维)
    • 1
    • 3
    Email author
  1. 1.Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (NanjingTech)NanjingChina
  2. 2.Institute of Applied Physics and Materials EngineeringUniversity of MacauMacau SARChina
  3. 3.Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University (NPU)Xi’anChina

Personalised recommendations