Science China Materials

, Volume 62, Issue 1, pp 25–42 | Cite as

Mass transport through metal organic framework membranes

  • Yi Guo (郭弈)
  • Xinsheng Peng (彭新生)Email author


Metal-organic frameworks (MOFs), which are composed of metal nodes and organic ligands, possess crystal phase, ordered well-defined porous structure and large surface area. Since first reported in 1990, MOFs have attracted extensive attention and the fabrication of MOF membranes has expanded their applications and endowed them with a bright future in various fields. The mass transportation process through MOF membranes is vital during their diverse applications. In this review, the strategies of preparing continuous and well-intergrown MOF membranes are presented firstly. The selective transportation processes of gas molecules, liquid molecules and ions through MOF membranes are discussed in detail, respectively. The effects of pore entrance size, interaction, functional groups decorating on the ligands and guest components on mass transportation have been summarized in this review as well. In addition, MOF membranes with selective transportation performance demonstrate potential in separation, catalysis, energy transformation and storage devices, and so on.


mass transportation metal-organic framework (MOF) membranes 



金属有机框架物(MOF)是由金属节点和有机配体依靠配位键结合组装而成的晶体材料, 具有规则的孔道结构和巨大的比表面积. 自 1990被提出以来, MOF便引起了广泛关注; 同时MOF薄膜的成功制备扩大了其应用范围, 使其应用于诸多领域. 在MOF薄膜的应用中, 跨 膜传质过程至关重要. 本文首先综述了近年来MOF薄膜材料的制备方法, 接着分别详细讨论了气体分子、液体分子和离子的选择性跨膜 传输. 在传质过程中, MOF的窗口尺寸、配体上修饰的功能基团以及孔道中的客体分子均会对离子传输产生影响. 具有选择性传输特性的 MOF薄膜在分离、催化和能量存储和转化领域均有潜在应用.



This work was supported by Key Program of National Natural Science Foundation of China (51632008), Zhejiang Provincial Natural Science Foundation (LD18E020001) and the National Natural Science Foundation of China (21671171).


  1. 1.
    Park KS, Ni Z, Côté AP, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA, 2006, 103: 10186–10191Google Scholar
  2. 2.
    Chui SSY, Lo SMF, Charmant JPH, et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science, 1999, 283: 1148–1150Google Scholar
  3. 3.
    Humphrey SM, Chang JS, Jhung SH, et al. Porous cobalt(II)–organic frameworks with corrugated walls: structurally robust gas-sorption materials. Angew Chem Int Ed, 2007, 46: 272–275Google Scholar
  4. 4.
    Hoskins BF, Robson R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII (CN)4] and CuI[4,4′,4″,4‴-tetracyanotetraphenylmethane]BF4∙xC6 H5NO2. J Am Chem Soc, 1990, 112: 1546–1554Google Scholar
  5. 5.
    Li H, Eddaoudi M, O’Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 1999, 402: 276–279Google Scholar
  6. 6.
    Férey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalate- based solid with unusually large pore volumes and surface area. Science, 2005, 309: 2040–2042Google Scholar
  7. 7.
    Cavka JH, Jakobsen S, Olsbye U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc, 2008, 130: 13850–13851Google Scholar
  8. 8.
    Horike S, Shimomura S, Kitagawa S. Soft porous crystals. Nat Chem, 2009, 1: 695–704Google Scholar
  9. 9.
    Zhao Y, Liu J, Horn M, et al. Recent advancements in metal organic framework based electrodes for supercapacitors. Sci China Mater, 2018, 61: 159–184Google Scholar
  10. 10.
    Duan C, Li F, Xiao J, et al. Rapid room-temperature synthesis of hierarchical porous zeolitic imidazolate frameworks with high space-time yield. Sci China Mater, 2017, 60: 1205–1214Google Scholar
  11. 11.
    Huang ZD, Zhang TT, Lu H, et al. Bimetal-organic-framework derived CoTiO3 mesoporous micro-prisms anode for superior stable power sodium ion batteries. Sci China Mater, 2018, doi: 10.1007/s40843-017-9225-5Google Scholar
  12. 12.
    Dou Z, Cai J, Cui Y, et al. Preparation and gas separation properties of metal-organic framework membranes. Z Anorg Allg Chem, 2015, 641: 792–796Google Scholar
  13. 13.
    Liu J, Canfield N, Liu W. Preparation and characterization of a hydrophobic metal–organic framework membrane supported on a thin porous metal sheet. Ind Eng Chem Res, 2016, 55: 3823–3832Google Scholar
  14. 14.
    Yang Q, Wiersum AD, Llewellyn PL, et al. Functionalizing porous zirconium terephthalate UiO-66(Zr) for natural gas upgrading: a computational exploration. Chem Commun, 2011, 47: 9603–9605Google Scholar
  15. 15.
    Xiang Z, Fang C, Leng S, et al. An amino group functionalized metal–organic framework as a luminescent probe for highly selective sensing of Fe3+ ions. J Mater Chem A, 2014, 2: 7662–7665Google Scholar
  16. 16.
    Hendon CH, Tiana D, Fontecave M, et al. Engineering the optical response of the titanium-MIL-125 metal–organic framework through ligand functionalization. J Am Chem Soc, 2013, 135: 10942–10945Google Scholar
  17. 17.
    Wang B, Yang Q, Guo C, et al. Stable Zr(IV)-based metal–organic frameworks with predesigned functionalized ligands for highly selective detection of Fe(III) ions in water. ACS Appl Mater Interfaces, 2017, 9: 10286–10295Google Scholar
  18. 18.
    Cohen SM. Postsynthetic methods for the functionalization of metal–organic frameworks. Chem Rev, 2012, 112: 970–1000Google Scholar
  19. 19.
    Nguyen HGT, Weston MH, Sarjeant AA, et al. Design, synthesis, characterization, and catalytic properties of a large-pore metalorganic framework possessing single-site vanadyl(monocatecholate) moieties. Cryst Growth Des, 2013, 13: 3528–3534Google Scholar
  20. 20.
    Guo XG, Qiu S, Chen X, et al. Postsynthesis modification of a metallosalen-containing metal–organic framework for selective Th(IV)/Ln(III) separation. Inorg Chem, 2017, 56: 12357–12361Google Scholar
  21. 21.
    González Miera G, Bermejo Gómez A, Chupas PJ, et al. Topological transformation of a metal–organic framework triggered by ligand exchange. Inorg Chem, 2017, 56: 4576–4583Google Scholar
  22. 22.
    Gadipelli S, Guo Z. Postsynthesis annealing of MOF-5 remarkably enhances the framework structural stability and CO2 uptake. Chem Mater, 2014, 26: 6333–6338Google Scholar
  23. 23.
    Vermeulen NA, Karagiaridi O, Sarjeant AA, et al. Aromatizing olefin metathesis by ligand isolation inside a metal–organic framework. J Am Chem Soc, 2013, 135: 14916–14919Google Scholar
  24. 24.
    Chen L, Luque R, Li Y. Controllable design of tunable nanostructures inside metal–organic frameworks. Chem Soc Rev, 2017, 46: 4614–4630Google Scholar
  25. 25.
    Zhang W, Lu G, Cui C, et al. A family of metal-organic frameworks exhibiting size-selective catalysis with encapsulated noblemetal nanoparticles. Adv Mater, 2014, 26: 4056–4060Google Scholar
  26. 26.
    Li B, Zhang Y, Ma D, et al. Metal-cation-directed de Novo assembly of a functionalized guest molecule in the nanospace of a metal–organic framework. J Am Chem Soc, 2014, 136: 1202–1205Google Scholar
  27. 27.
    Fan CB, Liu ZQ, Gong LL, et al. Photoswitching adsorption selectivity in a diarylethene–azobenzene MOF. Chem Commun, 2017, 53: 763–766Google Scholar
  28. 28.
    Zhao M, Yuan K, Wang Y, et al. Metal–organic frameworks as selectivity regulators for hydrogenation reactions. Nature, 2016, 539: 76–80Google Scholar
  29. 29.
    Yang Q, Xu Q, Yu SH, et al. Pd nanocubes@ZIF-8: Integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis. Angew Chem Int Ed, 2016, 55: 3685–3689Google Scholar
  30. 30.
    Liang K, Ricco R, Doherty CM, et al. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat Commun, 2015, 6: 7240Google Scholar
  31. 31.
    Li JR, Sculley J, Zhou HC. Metal–organic frameworks for separations. Chem Rev, 2012, 112: 869–932Google Scholar
  32. 32.
    Britt D, Furukawa H, Wang B, et al. Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proc Natl Acad Sci USA, 2009, 106: 20637–20640Google Scholar
  33. 33.
    Xue DX, Belmabkhout Y, Shekhah O, et al. Tunable rare earth fcu-MOF platform: access to adsorption kinetics driven gas/vapor separations via pore size contraction. J Am Chem Soc, 2015, 137: 5034–5040Google Scholar
  34. 34.
    Luo F, Yan C, Dang L, et al. UTSA-74: A MOF-74 isomer with two accessible binding sites per metal center for highly selective gas separation. J Am Chem Soc, 2016, 138: 5678–5684Google Scholar
  35. 35.
    Chang G, Huang M, Su Y, et al. Immobilization of Ag(I) into a metal–organic framework with–SO3H sites for highly selective olefin–paraffin separation at room temperature. Chem Commun, 2015, 51: 2859–2862Google Scholar
  36. 36.
    Xiang SC, Zhang Z, Zhao CG, et al. Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene. Nat Commun, 2011, 2: 204Google Scholar
  37. 37.
    Sun Y, Yang F, Wei Q, et al. Oriented nano-microstructure-assisted controllable fabrication of metal-organic framework membranes on nickel foam. Adv Mater, 2016, 28: 2374–2381Google Scholar
  38. 38.
    Qin X, Sun Y, Wang N, et al. Nanostructure array assisted aggregation- based growth of a Co-MOF-74 membrane on a Nifoam substrate for gas separation. RSC Adv, 2016, 6: 94177–94183Google Scholar
  39. 39.
    Sumida K, Rogow DL, Mason JA, et al. Carbon dioxide capture in metal–organic frameworks. Chem Rev, 2012, 112: 724–781Google Scholar
  40. 40.
    Wu H, Gong Q, Olson DH, et al. Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks. Chem Rev, 2012, 112: 836–868Google Scholar
  41. 41.
    Furukawa H, Gándara F, Zhang YB, et al. Water adsorption in porous metal–organic frameworks and related materials. J Am Chem Soc, 2014, 136: 4369–4381Google Scholar
  42. 42.
    Zhang Z, Yao ZZ, Xiang S, et al. Perspective of microporous metal–organic frameworks for CO2 capture and separation. Energy Environ Sci, 2014, 7: 2868–2899Google Scholar
  43. 43.
    Cui Y, Yue Y, Qian G, et al. Luminescent functional metal–organic frameworks. Chem Rev, 2012, 112: 1126–1162Google Scholar
  44. 44.
    Wang C, Zhang T, Lin W. Rational synthesis of noncentrosymmetric metal–organic frameworks for second-order nonlinear optics. Chem Rev, 2012, 112: 1084–1104Google Scholar
  45. 45.
    Yu J, Cui Y, Xu H, et al. Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photonpumped lasing. Nat Commun, 2013, 4: 2719Google Scholar
  46. 46.
    Rao X, Song T, Gao J, et al. A highly sensitive mixed lanthanide metal–organic framework self-calibrated luminescent thermometer. J Am Chem Soc, 2013, 135: 15559–15564Google Scholar
  47. 47.
    Cui Y, Song R, Yu J, et al. Dual-emitting MOF⊃dye composite for ratiometric temperature sensing. Adv Mater, 2015, 27: 1420–1425Google Scholar
  48. 48.
    Wang C, Lin W. Diffusion-controlled luminescence quenching in metal−organic frameworks. J Am Chem Soc, 2011, 133: 4232–4235Google Scholar
  49. 49.
    Yin W, Tao C, Wang F, et al. Tuning optical properties of MOFbased thin films by changing the ligands of MOFs. Sci China Mater, 2018, 61: 391–400Google Scholar
  50. 50.
    Ye JW, Zhou X, Wang Y, et al. Room-temperature sintered metalorganic framework nanocrystals: A new type of optical ceramics. Sci China Mater, 2018, 61: 424–428Google Scholar
  51. 51.
    Yoon M, Srirambalaji R, Kim K. Homochiral metal–organic frameworks for asymmetric heterogeneous catalysis. Chem Rev, 2012, 112: 1196–1231Google Scholar
  52. 52.
    Ji P, Song Y, Drake T, et al. Titanium(III)-oxo clusters in a metal–organic framework support single-site Co(II)-hydride catalysts for arene hydrogenation. J Am Chem Soc, 2018, 140: 433–440Google Scholar
  53. 53.
    An B, Zeng L, Jia M, et al. Molecular iridium complexes in metal–organic frameworks catalyze CO2 hydrogenation via concerted proton and hydride transfer. J Am Chem Soc, 2017, 139: 17747–17750Google Scholar
  54. 54.
    Wu CD, Zhao M. Incorporation of molecular catalysts in metalorganic frameworks for highly efficient heterogeneous catalysis. Adv Mater, 2017, 29: 1605446Google Scholar
  55. 55.
    Albo J, Vallejo D, Beobide G, et al. Copper-based metal-organic porous materials for CO2 electrocatalytic reduction to alcohols. ChemSusChem, 2017, 10: 1100–1109Google Scholar
  56. 56.
    An B, Zhang J, Cheng K, et al. Confinement of ultrasmall Cu/ ZnOx nanoparticles in metal–organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2. J Am Chem Soc, 2017, 139: 3834–3840Google Scholar
  57. 57.
    Kreno LE, Leong K, Farha OK, et al. Metal–organic framework materials as chemical sensors. Chem Rev, 2012, 112: 1105–1125Google Scholar
  58. 58.
    Campbell MG, Sheberla D, Liu SF, et al. Cu3 (hexaiminotriphenylene) 2: An electrically conductive 2D metal-organic framework for chemiresistive sensing. Angew Chem Int Ed, 2015, 54: 4349–4352Google Scholar
  59. 59.
    Mallick A, Garai B, Addicoat MA, et al. Solid state organic amine detection in a photochromic porous metal organic framework. Chem Sci, 2015, 6: 1420–1425Google Scholar
  60. 60.
    Xu XY, Yan B. Eu(III)-functionalized MIL-124 as fluorescent probe for highly selectively sensing ions and organic small molecules especially for Fe(III) and Fe(II). ACS Appl Mater Interfaces, 2015, 7: 721–729Google Scholar
  61. 61.
    Dong XY, Wang R, Wang JZ, et al. Highly selective Fe3+ sensing and proton conduction in a water-stable sulfonate–carboxylate Tb–organic-framework. J Mater Chem A, 2015, 3: 641–647Google Scholar
  62. 62.
    Cao LH, Shi F, Zhang WM, et al. Selective sensing of Fe3+ and Al3+ ions and detection of 2,4,6-trinitrophenol by a water-stable terbium- based metal-organic framework. Chem Eur J, 2015, 21: 15705–15712Google Scholar
  63. 63.
    Zhou X, Cheng J, Li L, et al. A europium(III) metal-organic framework as ratiometric turn-on luminescent sensor for Al3+ ions. Sci China Mater, 2018, 61: 752–757Google Scholar
  64. 64.
    Bétard A, Fischer RA. Metal–organic framework thin films: from fundamentals to applications.. Chem Rev, 2012, 112: 1055–1083Google Scholar
  65. 65.
    Li WJ, Tu M, Cao R, et al. Metal-organic framework thin films: electrochemical fabrication techniques and corresponding applications & perspectives. J Mater Chem A, 2016, 4: 12356–12369Google Scholar
  66. 66.
    Zacher D, Shekhah O, Wöll C, et al. Thin films of metal–organic frameworks. Chem Soc Rev, 2009, 38: 1418–1429Google Scholar
  67. 67.
    Denny MS, Moreton JC, Benz L, et al. Metal–organic frameworks for membrane-based separations. Nat Rev Mater, 2016, 1: 16078Google Scholar
  68. 68.
    Li X, Liu Y, Wang J, et al. Metal–organic frameworks based membranes for liquid separation. Chem Soc Rev, 2017, 46: 7124–7144Google Scholar
  69. 69.
    Tanh Jeazet HB, Staudt C, Janiak C. Metal–organic frameworks in mixed-matrix membranes for gas separation. Dalton Trans, 2012, 41: 14003–14027Google Scholar
  70. 70.
    Denny Jr. MS, Cohen SM. In situ modification of metal-organic frameworks in mixed-matrix membranes. Angew Chem Int Ed, 2015, 54: 9029–9032Google Scholar
  71. 71.
    Castarlenas S, Téllez C, Coronas J. Gas separation with mixed matrix membranes obtained from MOF UiO-66-graphite oxide hybrids. J Membrane Sci, 2017, 526: 205–211Google Scholar
  72. 72.
    Ghalei B, Sakurai K, Kinoshita Y, et al. Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles. Nat Energy, 2017, 2: 17086Google Scholar
  73. 73.
    Benzaqui M, Pillai RS, Sabetghadam A, et al. Revisiting the aluminum trimesate-based MOF (MIL-96): From structure determination to the processing of mixed matrix membranes for CO2 capture. Chem Mater, 2017, 29: 10326–10338Google Scholar
  74. 74.
    Sorribas S, Kudasheva A, Almendro E, et al. Pervaporation and membrane reactor performance of polyimide based mixed matrix membranes containing MOF HKUST-1. Chem Eng Sci, 2015, 124: 37–44Google Scholar
  75. 75.
    Wee LH, Li Y, Zhang K, et al. Submicrometer-sized ZIF-71 filled organophilic membranes for improved bioethanol recovery: mechanistic insights by Monte Carlo simulation and FTIR spectroscopy. Adv Funct Mater, 2015, 25: 516–525Google Scholar
  76. 76.
    Lin R, Ge L, Diao H, et al. Propylene/propane selective mixed matrix membranes with grape-branched MOF/CNT filler. J Mater Chem A, 2016, 4: 6084–6090Google Scholar
  77. 77.
    Morozan A, Jaouen F. Metal organic frameworks for electrochemical applications. Energy Environ Sci, 2012, 5: 9269–9290Google Scholar
  78. 78.
    Mao Y, Li G, Guo Y, et al. Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium–sulfur batteries. Nat Commun, 2017, 8: 14628Google Scholar
  79. 79.
    Guo Y, Jiang Z, Ying W, et al. A DNA-threaded ZIF-8 membrane with high proton conductivity and low methanol permeability. Adv Mater, 2018, 30: 1705155Google Scholar
  80. 80.
    Liu J, Wöll C. Surface-supported metal–organic framework thin films: fabrication methods, applications, and challenges. Chem Soc Rev, 2017, 46: 5730–5770Google Scholar
  81. 81.
    Otsubo K, Haraguchi T, Kitagawa H. Nanoscale crystalline architectures of Hofmann-type metal–organic frameworks. Coord Chem Rev, 2017, 346: 123–138Google Scholar
  82. 82.
    Liu B, Fischer RA. Liquid-phase epitaxy of metal organic framework thin films. Sci China Chem, 2011, 54: 1851–1866Google Scholar
  83. 83.
    Zhuang JL, Terfort A, Wöll C. Formation of oriented and patterned films of metal–organic frameworks by liquid phase epitaxy: A review. Coord Chem Rev, 2016, 307: 391–424Google Scholar
  84. 84.
    Rangnekar N, Mittal N, Elyassi B, et al. Zeolite membranes–a review and comparison with MOFs. Chem Soc Rev, 2015, 44: 7128–7154Google Scholar
  85. 85.
    Li W, Zhang Y, Li Q, et al. Metal−organic framework composite membranes: Synthesis and separation applications. Chem Eng Sci, 2015, 135: 232–257Google Scholar
  86. 86.
    Rubio-Martinez M, Avci-Camur C, Thornton AW, et al. New synthetic routes towards MOF production at scale. Chem Soc Rev, 2017, 46: 3453–3480Google Scholar
  87. 87.
    Ren J, Dyosiba X, Musyoka NM, et al. Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs). Coord Chem Rev, 2017, 352: 187–219Google Scholar
  88. 88.
    Adatoz E, Avci AK, Keskin S. Opportunities and challenges of MOF-based membranes in gas separations. Separation Purification Tech, 2015, 152: 207–237Google Scholar
  89. 89.
    Hermes S, Schröder F, Chelmowski R, et al. Selective nucleation and growth of metal−organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111). J Am Chem Soc, 2005, 127: 13744–13745Google Scholar
  90. 90.
    Yoo Y, Lai Z, Jeong HK. Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth. Microporous Mesoporous Mater, 2009, 123: 100–106Google Scholar
  91. 91.
    Qiu S, Xue M, Zhu G. Metal–organic framework membranes: from synthesis to separation application. Chem Soc Rev, 2014, 43: 6116–6140Google Scholar
  92. 92.
    Liu X, Wang C, Wang B, et al. Novel organic-dehydration membranes prepared from zirconium metal-organic frameworks. Adv Funct Mater, 2017, 27: 1604311Google Scholar
  93. 93.
    Zhu Y, Gupta KM, Liu Q, et al. Synthesis and seawater desalination of molecular sieving zeolitic imidazolate framework membranes. Desalination, 2016, 385: 75–82Google Scholar
  94. 94.
    Huang Y, Liu D, Liu Z, et al. Synthesis of zeolitic imidazolate framework membrane using temperature-switching synthesis strategy for gas separation. Ind Eng Chem Res, 2016, 55: 7164–7170Google Scholar
  95. 95.
    Eum K, Rownaghi A, Choi D, et al. Fluidic processing of highperformance ZIF-8 membranes on polymeric hollow fibers: mechanistic insights and microstructure control. Adv Funct Mater, 2016, 26: 5011–5018Google Scholar
  96. 96.
    Brown AJ, Brunelli NA, Eum K, et al. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes. Science, 2014, 345: 72–75Google Scholar
  97. 97.
    Cacho-Bailo F, Etxeberría-Benavides M, David O, et al. Structural contraction of zeolitic imidazolate frameworks: membrane application on porous metallic hollow fibers for gas separation. ACS Appl Mater Interfaces, 2017, 9: 20787–20796Google Scholar
  98. 98.
    Kong L, Zhang X, Liu H, et al. Synthesis of a highly stable ZIF-8 membrane on a macroporous ceramic tube by manual-rubbing ZnO deposition as a multifunctional layer. J Membrane Sci, 2015, 490: 354–363Google Scholar
  99. 99.
    Li Q, Liu G, Huang K, et al. Preparation and characterization of Ni2(mal)2(bpy) homochiral MOF membrane. Asia-Pac J Chem Eng, 2016, 11: 60–69Google Scholar
  100. 100.
    Kasik A, Dong X, Lin YS. Synthesis and stability of zeolitic imidazolate framework-68 membranes. Microporous Mesoporous Mater, 2015, 204: 99–105Google Scholar
  101. 101.
    Knebel A, Friebe S, Bigall NC, et al. Comparative study of MIL-96 (Al) as continuous metal–organic frameworks layer and mixedmatrix membrane. ACS Appl Mater Interfaces, 2016, 8: 7536–7544Google Scholar
  102. 102.
    Kasik A, James J, Lin YS. Synthesis of ZIF-68 membrane on a ZnO modified α-alumina support by a modified reactive seeding method. Ind Eng Chem Res, 2016, 55: 2831–2839Google Scholar
  103. 103.
    Mao Y, Cao W, Li J, et al. Enhanced gas separation through wellintergrown MOF membranes: seed morphology and crystal growth effects. J Mater Chem A, 2013, 1: 11711–11716Google Scholar
  104. 104.
    Hu P, Yang Y, Mao Y, et al. Room temperature synthesis of ZIF-8 membranes from seeds anchored in gelatin films for gas separation. CrystEngComm, 2015, 17: 1576–1582Google Scholar
  105. 105.
    Mao Y, Cao W, Li J, et al. HKUST-1 membranes anchored on porous substrate by hetero MIL-110 nanorod array seeds. Chem Eur J, 2013, 19: 11883–11886Google Scholar
  106. 106.
    Ang H, Hong L. Polycationic polymer-regulated assembling of 2D MOF nanosheets for high-performance nanofiltration. ACS Appl Mater Interfaces, 2017, 9: 28079–28088Google Scholar
  107. 107.
    Peng Y, Li Y, Ban Y, et al. Two-dimensional metal-organic framework nanosheets for membrane-based gas separation. Angew Chem Int Ed, 2017, 56: 9757–9761Google Scholar
  108. 108.
    Mao Y, Chen D, Hu P, et al. Hierarchical mesoporous metalorganic frameworks for enhanced CO2 capture. Chem Eur J, 2015, 21: 15127–15132Google Scholar
  109. 109.
    Mao Y, Li J, Cao W, et al. Pressure-assisted synthesis of HKUST-1 thin film on polymer hollow fiber at room temperature toward gas separation. ACS Appl Mater Interfaces, 2014, 6: 4473–4479Google Scholar
  110. 110.
    Mao Y, Su B, Cao W, et al. Specific oriented metal–organic framework membranes and their facet-tuned separation performance. ACS Appl Mater Interfaces, 2014, 6: 15676–15685Google Scholar
  111. 111.
    Mao Y, shi L, Huang H, et al. Room temperature synthesis of free-standing HKUST-1 membranes from copper hydroxide nanostrands for gas separation. Chem Commun, 2013, 49: 5666–5668Google Scholar
  112. 112.
    Guo Y, Mao Y, Hu P, et al. Self-confined synthesis of HKUST-1 membranes from CuO nanosheets at room temperature. ChemistrySelect, 2016, 1: 108–113Google Scholar
  113. 113.
    Guo Y, Wang X, Hu P, et al. ZIF-8 coated polyvinylidenefluoride (PVDF) hollow fiber for highly efficient separation of small dye molecules. Appl Mater Today, 2016, 5: 103–110Google Scholar
  114. 114.
    Li J, Cao W, Mao Y, et al. Zinc hydroxide nanostrands: unique precursors for synthesis of ZIF-8 thin membranes exhibiting high size-sieving ability for gas separation. CrystEngComm, 2014, 16: 9788–9791Google Scholar
  115. 115.
    Mao Y, Li J, Cao W, et al. General incorporation of diverse components inside metal-organic framework thin films at room temperature. Nat Commun, 2014, 5: 5532Google Scholar
  116. 116.
    Guo Y, Ying Y, Mao Y, et al. Polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation. Angew Chem Int Ed, 2016, 55: 15120–15124Google Scholar
  117. 117.
    Kang Z, Fan L, Sun D. Recent advances and challenges of metal–organic framework membranes for gas separation. J Mater Chem A, 2017, 5: 10073–10091Google Scholar
  118. 118.
    Hurrle S, Friebe S, Wohlgemuth J, et al. Sprayable, large-area metal-organic framework films and membranes of varying thickness. Chem Eur J, 2017, 23: 2294–2298Google Scholar
  119. 119.
    Li W, Zhang Y, Zhang C, et al. Transformation of metal-organic frameworks for molecular sieving membranes. Nat Commun, 2016, 7: 11315Google Scholar
  120. 120.
    Cacho-Bailo F, Catalán-Aguirre S, Etxeberría-Benavides M, et al. Metal-organic framework membranes on the inner-side of a polymeric hollow fiber by microfluidic synthesis. J Membrane Sci, 2015, 476: 277–285Google Scholar
  121. 121.
    Li W, Su P, Li Z, et al. Ultrathin metal–organic framework membrane production by gel–vapour deposition. Nat Commun, 2017, 8: 406Google Scholar
  122. 122.
    Zhu Y, Liu Q, Caro J, et al. Highly hydrogen-permselective zeolitic imidazolate framework ZIF-8 membranes prepared on coarse and macroporous tubes through repeated synthesis. Separation Purification Tech, 2015, 146: 68–74Google Scholar
  123. 123.
    Eum K, Ma C, Rownaghi A, et al. ZIF-8 membranes via interfacial microfluidic processing in polymeric hollow fibers: efficient propylene separation at elevated pressures. ACS Appl Mater Interfaces, 2016, 8: 25337–25342Google Scholar
  124. 124.
    Hayashi J, Mizuta H, Yamamoto M, et al. Separation of ethane/ethylene and propane/propylene systems with a carbonized BPDA−pp’ODA polyimide membrane. Ind Eng Chem Res, 1996, 35: 4176–4181Google Scholar
  125. 125.
    Knebel A, Geppert B, Volgmann K, et al. Defibrillation of soft porous metal-organic frameworks with electric fields. Science, 2017, 358: 347–351Google Scholar
  126. 126.
    Friebe S, Geppert B, Steinbach F, et al. Metal–organic framework UiO-66 layer: a highly oriented membrane with good selectivity and hydrogen permeance. ACS Appl Mater Interfaces, 2017, 9: 12878–12885Google Scholar
  127. 127.
    Müller K, Knebel A, Zhao F, et al. Switching thin films of azobenzene- containing metal-organic frameworks with visible light. Chem Eur J, 2017, 23: 5434–5438Google Scholar
  128. 128.
    Knebel A, Sundermann L, Mohmeyer A, et al. Azobenzene guest molecules as light-switchable CO2 valves in an ultrathin UiO-67 membrane. Chem Mater, 2017, 29: 3111–3117Google Scholar
  129. 129.
    Gao Z, Li L, Li H, et al. A hybrid zeolitic imidazolate framework Co-IM-mIM membrane for gas separation. J Cent South Univ, 2017, 24: 1727–1735Google Scholar
  130. 130.
    Chen Y, Wang B, Zhang S, et al. Fabrication of Cu-BTC metal organic frameworks on PVDF hollow fiber membrane for gas separation via multiple reactions. Fibers Polym, 2015, 16: 2130–2134Google Scholar
  131. 131.
    Perea-Cachero A, Calvo P, Romero E, et al. Enhancement of growth of MOF MIL-68(Al) thin films on porous alumina tubes using different linking agents. Eur J Inorg Chem, 2017, 2017: 2532–2540Google Scholar
  132. 132.
    Campbell J, Tokay B. Controlling the size and shape of Mg-MOF- 74 crystals to optimise film synthesis on alumina substrates. Microporous Mesoporous Mater, 2017, 251: 190–199Google Scholar
  133. 133.
    Wang N, Mundstock A, Liu Y, et al. Amine-modified Mg-MOF-74/CPO-27-Mg membrane with enhanced H2/CO2 separation. Chem Eng Sci, 2015, 124: 27–36Google Scholar
  134. 134.
    Qiao Z, Wang N, Jiang J, et al. Design of amine-functionalized metal–organic frameworks for CO2 separation: the more amine, the better? Chem Commun, 2016, 52: 974–977Google Scholar
  135. 135.
    Jang E, Kim E, Kim H, et al. Formation of ZIF-8 membranes inside porous supports for improving both their H2/CO2 separation performance and thermal/mechanical stability. J Membrane Sci, 2017, 540: 430–439Google Scholar
  136. 136.
    Isaeva VI, Barkova MI, Kustov LM, et al. In situ synthesis of novel ZIF-8 membranes on polymeric and inorganic supports. J Mater Chem A, 2015, 3: 7469–7476Google Scholar
  137. 137.
    Li W, Su P, Zhang G, et al. Preparation of continuous NH2–MIL- 53 membrane on ammoniated polyvinylidene fluoride hollow fiber for efficient H2 purification. J Membrane Sci, 2015, 495: 384–391Google Scholar
  138. 138.
    Jin H, Wollbrink A, Yao R, et al. A novel CAU-10-H MOF membrane for hydrogen separation under hydrothermal conditions. J Membrane Sci, 2016, 513: 40–46Google Scholar
  139. 139.
    Rui Z, James JB, Kasik A, et al. Metal-organic framework membrane process for high purity CO2 production. AIChE J, 2016, 62: 3836–3841Google Scholar
  140. 140.
    Keskin S, Sholl DS. Assessment of a metal−organic framework membrane for gas separations using atomically detailed calculations: CO2, CH4, N2, H2 mixtures in MOF-5. Ind Eng Chem Res, 2009, 48: 914–922Google Scholar
  141. 141.
    Hu Y, Wu Y, Devendran C, et al. Preparation of nanoporous graphene oxide by nanocrystal-masked etching: toward a nacremimetic metal–organic framework molecular sieving membrane. J Mater Chem A, 2017, 5: 16255–16262Google Scholar
  142. 142.
    Kang Z, Fan L, Wang S, et al. In situ confinement of free linkers within a stable MOF membrane for highly improved gas separation properties. CrystEngComm, 2017, 19: 1601–1606Google Scholar
  143. 143.
    Miyamoto M, Hori K, Goshima T, et al. An organoselective zirconium- based metal-organic-framework UiO-66 membrane for pervaporation. Eur J Inorg Chem, 2017, 2094–2099Google Scholar
  144. 144.
    Wang S, Kang Z, Xu B, et al. Wettability switchable metal-organic framework membranes for pervaporation of water/ethanol mixtures. Inorg Chem Commun, 2017, 82: 64–67Google Scholar
  145. 145.
    Jiang Y, Ryu GH, Joo SH, et al. Porous two-dimensional monolayer metal–organic framework material and its use for the sizeselective separation of nanoparticles. ACS Appl Mater Interfaces, 2017, 9: 28107–28116Google Scholar
  146. 146.
    Li Y, Wee LH, Martens JA, et al. Interfacial synthesis of ZIF-8 membranes with improved nanofiltration performance. J Membrane Sci, 2017, 523: 561–566Google Scholar
  147. 147.
    Liu X, Demir NK, Wu Z, et al. Highly water-stable zirconium metal–organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J Am Chem Soc, 2015, 137: 6999–7002Google Scholar
  148. 148.
    Ramaswamy P, Wong NE, Shimizu GKH. MOFs as proton conductors–challenges and opportunities. Chem Soc Rev, 2014, 43: 5913–5932Google Scholar
  149. 149.
    Tominaka S, Cheetham AK. Intrinsic and extrinsic proton conductivity in metal-organic frameworks. RSC Adv, 2014, 4: 54382–54387Google Scholar
  150. 150.
    Borges DD, Devautour-Vinot S, Jobic H, et al. Proton transport in a highly conductive porous zirconium-based metal-organic framework: molecular insight. Angew Chem Int Ed, 2016, 55: 3919–3924Google Scholar
  151. 151.
    Phang WJ, Jo H, Lee WR, et al. Superprotonic conductivity of a UiO-66 framework functionalized with sulfonic acid groups by facile postsynthetic oxidation. Angew Chem Int Ed, 2015, 54: 5142–5146Google Scholar
  152. 152.
    Shen Y, Yang XF, Zhu HB, et al. A unique 3D metal–organic framework based on a 12-connected pentanuclear Cd(II) cluster exhibiting proton conduction. Dalton Trans, 2015, 44: 14741–14746Google Scholar
  153. 153.
    Dong XY, Wang R, Li JB, et al. A tetranuclear Cu4(μ3-OH)2-based metal–organic framework (MOF) with sulfonate–carboxylate ligands for proton conduction. Chem Commun, 2013, 49: 10590–10592Google Scholar
  154. 154.
    Zhu M, Hao ZM, Song XZ, et al. A new type of double-chain based 3D lanthanide(III) metal–organic framework demonstrating proton conduction and tunable emission. Chem Commun, 2014, 50: 1912–1914Google Scholar
  155. 155.
    Yang F, Xu G, Dou Y, et al. A flexible metal–organic framework with a high density of sulfonic acid sites for proton conduction. Nat Energy, 2017, 2: 877–883Google Scholar
  156. 156.
    Duerinck T, Denayer JFM. Metal-organic frameworks as stationary phases for chiral chromatographic and membrane separations. Chem Eng Sci, 2015, 124: 179–187Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Silicon Materials, School of Materials Science and EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations