Advertisement

Science China Materials

, Volume 61, Issue 11, pp 1454–1461 | Cite as

Multiplexing technology for in vitro diagnosis of pathogens: the key contribution of phosphorus dendrimers

  • Jean Pierre Majoral
  • Jean Marie François
  • Richard Fabre
  • Alice Senescau
  • Serge Mignani
  • Anne-Marie Caminade
Reviews
  • 88 Downloads

Abstract

After the microbiology based on Pasteur’s method and polymerase chain reaction (PCR), the diagnosis company named Dendris has proposed a third-generation of diagnosis enabling the search of a broad range of pathogens with strong sensitivity and specificity. This extraordinary profile was possible thanks to the use of phosphorus dendrimers for which various techniques of deposition on a given support were investigated and described and analyzed in this report.

Keywords

phosphorus dendrimers diagnosis DNA arrays multiplexing technology 

Notes

Acknowledgements

This work was supported by the National Research Agency (Agence Nationale pour la Recherche), “BIOTECHNOLOGIES” program (ANR 2010 BIOT 004 06: Project INNODIAG to JMF) and by Region Midi Pyrénées (06001324 & 07006292) to RF and JMF and by CNRS (JPM, AMC).

References

  1. 1.
    He Z. Microarrays: Current Technology, Innovations, and Applications. Poole: Caister Academic Press, 2014Google Scholar
  2. 2.
    Jo H, Lee S, Ban C. Highly sensitive and selective in vitro diagnostics based on DNA probes and aptamers. Biodesign, 2015, 3: 33–40Google Scholar
  3. 3.
    Joos B, Kuster H, Cone R. Covalent attachment of hybridizable oligonucleotides to glass supports. Anal Biochem, 1997, 247: 96–101CrossRefGoogle Scholar
  4. 4.
    Rogers YH, Jiang-Baucom P, Huang ZJ, et al. Immobilization of oligonucleotides onto a glass support via disulfide bonds: a method for preparation of DNA microarrays. Anal Biochem, 1999, 266: 23–30CrossRefGoogle Scholar
  5. 5.
    Donatin E, Drancourt M. DNA microarrays for the diagnosis of infectious diseases. Médecine Maladies Infectieuses, 2012, 42: 453–459CrossRefGoogle Scholar
  6. 6.
    Pillet S, Lardeux M, Dina J, et al. Comparative evaluation of six commercialized multiplex PCR kits for the diagnosis of respiratory infections. PLoS ONE, 2013, 8: e72174CrossRefGoogle Scholar
  7. 7.
    Benters R, Niemeyer CM, Wöhrle D. Dendrimer-activated solid supports for nucleic acid and protein microarrays. ChemBioChem, 2001, 2: 686–694CrossRefGoogle Scholar
  8. 8.
    Tomalia DA, Naylor AM, Goddard WA. Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed Engl, 1990, 29: 138–175CrossRefGoogle Scholar
  9. 9.
    Park JW, Jung Y, Jung YH, Seo JS, Lee Y. Preparation of oligonucleotide arrays with high-density DNA deposition and high hybridization efficiency. Bull Korean Chem Soc, 2004, 25: 1667–1670CrossRefGoogle Scholar
  10. 10.
    Benters R. DNA microarrays with PAMAM dendritic linker systems. Nucleic Acids Res, 2002, 30: 10e–10CrossRefGoogle Scholar
  11. 11.
    Ahmed S, Vepuri SB, Kalhapure RS, et al. Interactions of den-drimers with biological drug targets: reality or mystery—a gap in drug delivery and development research. Biomater Sci, 2016, 4: 1032–1050CrossRefGoogle Scholar
  12. 12.
    Svenson S. The dendrimer paradox—high medical expectations but poor clinical translation. Chem Soc Rev, 2015, 44: 4131–4144CrossRefGoogle Scholar
  13. 13.
    Launay N, Caminade AM, Majoral JP. Synthesis and reactivity of unusual phosphorus dendrimers. a useful divergent growth approach up to the seventh generation. J Am Chem Soc, 1995, 117: 3282–3283CrossRefGoogle Scholar
  14. 14.
    Slomkowski S, Miksa B, Chehimi MM, et al. Inorganic–organic systems with tailored properties controlled on molecular, macromolecular and microscopic level. Reactive Funct Polymers, 1999, 41: 45–57CrossRefGoogle Scholar
  15. 15.
    Launay N, Caminade AM, Majoral JP. Synthesis of bowl-shaped dendrimers from generation 1 to generation 8. J Organomet Chem, 1997, 529: 51–58CrossRefGoogle Scholar
  16. 16.
    Le Berre V. Dendrimeric coating of glass slides for sensitive DNA microarrays analysis. Nucleic Acids Res, 2003, 31: 88e–88CrossRefGoogle Scholar
  17. 17.
    Trévisiol E, Le Berre-Anton V, Leclaire J, et al. Dendrislides, dendrichips: a simple chemical functionalization of glass slides with phosphorus dendrimers as an effective means for the preparation of biochips. New J Chem, 2003, 27: 1713–1719CrossRefGoogle Scholar
  18. 18.
    Chaize B, Nguyen M, Ruysschaert T, et al. Microstructured liposome array. Bioconjugate Chem, 2006, 17: 245–247CrossRefGoogle Scholar
  19. 19.
    Nicu L, Guirardel M, Chambosse F, et al. Resonating piezoelectric membranes for microelectromechanically based bioassay: detection of streptavidin–gold nanoparticles interaction with biotinylated DNA. Sensor Actuat B-Chem, 2005, 110: 125–136CrossRefGoogle Scholar
  20. 20.
    Thibault C, Le Berre V, Casimirius S, et al. Direct microcontact printing of oligonucleotides for biochip applications.. J Nanobiotechnol, 2005, 3: 7CrossRefGoogle Scholar
  21. 21.
    Feng CL, Zhong X, Steinhart M, et al. Graded-bandgap quantumdot-modified nanotubes: a sensitive biosensor for enhanced detection of DNA hybridization. Adv Mater, 2007, 19: 1933–1936CrossRefGoogle Scholar
  22. 22.
    Feng CL, Zhong XH, Steinhart M, et al. Functional quantum-dot/dendrimer nanotubes for sensitive detection of DNA hybridization. Small, 2008, 4: 566–571CrossRefGoogle Scholar
  23. 23.
    Yu Y, Feng C, Caminade AM, et al. The detection of DNA hybridization on phosphorus dendrimer multilayer films by surface plasmon field enhanced-fluorescence spectroscopy. Langmuir, 2009, 25: 13680–13684CrossRefGoogle Scholar
  24. 24.
    Feng CL, Yin M, Zhang D, et al. Fluorescent core-shell star polymers based bioassays for ultrasensitive DNA detection by surface plasmon fluorescence spectroscopy. Macromol Rapid Commun, 2011, 32: 679–683CrossRefGoogle Scholar
  25. 25.
    Jauvert E, Dague E, Séverac M, et al. Probing single molecule interactions by AFM using bio-functionalized dendritips. Senss Actuators B-Chem, 2012, 168: 436–441CrossRefGoogle Scholar
  26. 26.
    Patel JB. 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Mol Diagnosis, 2001, 6: 313–321CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jean Pierre Majoral
    • 1
    • 2
    • 3
  • Jean Marie François
    • 3
    • 4
  • Richard Fabre
    • 3
  • Alice Senescau
    • 3
  • Serge Mignani
    • 5
  • Anne-Marie Caminade
    • 1
    • 2
  1. 1.Laboratoire de Chimie de Coordination du CNRSToulouse Cedex 4France
  2. 2.LCC-CNRS Université de Toulouse, CNRSToulouseFrance
  3. 3.DendrisLabègeFrance
  4. 4.LISBP, UMR CNRS 5504 INRA 792Toulouse Cedex 04France
  5. 5.Laboratoire de Chimie et de Biochimie Pharmacologiques et ToxicolgiqueUniversité Paris Descartes PRES Sorbonne Paris Cité, CNRS-UMR 860ParisFrance

Personalised recommendations