Science China Materials

, Volume 61, Issue 11, pp 1367–1386 | Cite as

Recent therapeutic applications of the theranostic principle with dendrimers in oncology

  • Serge MignaniEmail author
  • Joao RodriguesEmail author
  • Helena Tomas
  • Anne-Marie Caminade
  • Régis Laurent
  • Xiangyang Shi (史向阳)Email author
  • Jean-Pierre MajoralEmail author


At the intersection between treatment and diagnosis, nanoparticles technologies are strongly impacting the development of both therapeutic and diagnostic agents. Consequently, the development of novel modalities for concomitant noninvasive therapy and diagnostics known as theranostics as a single platform has gained significant interests. These multifunctional theranostic platforms include carbon-based nanomaterials (e.g., carbon nanotubes), drug conjugates, aliphatic polymers, micelles, vesicles, core-shell nanoparticles, microbubbles and dendrimers bearing different contrast agents and drugs, such as cytotoxic compounds in the oncology domain. Dendrimers emerged as a new class of highly tunable hyperbranched polymers, and have been developed as useful theranostic platforms. Magnetic resonance imaging, gamma scintigraphy, computed tomography and optical imaging are the main techniques developed with dendrimers in the theranostic domain in oncology. Different imaging agents have been used such as Gd(III), 19F, Fe2O3 (MRI), 76Br (PET), 111In, 88Y, 153Gd, 188Re, 131I (SPECT), 177Lu, gold (CT) and boronated groups, siliconnaphthalocyanines, dialkylcarbocyanines and QDs (optical imaging dyes).


theranostic platforms dendrimers magnetic resonance imaging gamma scintigraphy imaging computed tomography imaging optical imaging 



纳米粒子技术作为癌症诊断和治疗的交叉点, 极大地影响着抗肿瘤药物与肿瘤诊断剂的发展. 新型无创诊疗一体化纳米平台的发 展也因此得到了人们的广泛关注. 这些多功能的诊疗一体化平台包括: 碳基纳米材料例如碳纳米管、药物缀合物、脂肪族聚合物、胶 束、囊泡、核-壳结构的纳米颗粒、微泡和负载不同造影剂和药物如肿瘤学领域中的化疗药物的树状大分子等. 树状大分子作为一类新 型高度可调控的超支化聚合物, 现已被开发出多种用于肿瘤诊疗一体化的纳米平台. 磁共振成像、γ闪烁扫描技术、计算机断层扫描和光 学成像等也成为通过树状大分子发展起来的核心技术用于肿瘤的诊疗. 不同的造影剂体系包括Gd(III)、19F, Fe2O3 (MRI)、 76Br (PET)、 111In、 88Y、 153Gd、 188Re、 131I(SPECT)、 177Lu、金纳米颗粒(CT)和硼化基团、硅萘酞菁、二烷基羰花青和量子点光学成像染料等也已经 被开发使用.



This review is the result of intense cooperation between France, China and Portugal in the domain of dendrimers and cannot be possible without the devotion of our coworkers, the work of the colleagues all over the world and the support of several funding agencies. Mignani S, Rodrigues J, and Tomas H acknowledge the support of FCT-Fundação para a Ciência e a Tecnologia (project PEst-OE/ QUI/UI0674/2013, CQM, Portuguese Government funds), and ARDITI through the project M1420-01-0145-FEDER-000005 - Centro de Química da Madeira - CQM+ (Madeira 14-20), and Majoral J-P also acknowledges the funds from Centre National de la Recherche Scientifique (CNRS, France). Shi X acknowledges the support by the National Natural Science Foundation of China (21773026 and 81761148028), and (Mignani S, Majoral J-P and Shi X) by the Sino-French Caiyuanpei Programme.


  1. 1.
    Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer, 2005, 5: 161–171CrossRefGoogle Scholar
  2. 2.
    Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov, 2005, 4: 145–160CrossRefGoogle Scholar
  3. 3.
    Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacological Sci, 2009, 30: 592–599CrossRefGoogle Scholar
  4. 4.
    Kakkar A, Traverso G, Farokhzad OC, et al. Evolution of macromolecular complexity in drug delivery systems. Nat Rev Chem, 2017, 1: 0063CrossRefGoogle Scholar
  5. 5.
    Baig, T, Nayak J, Dwivedi V, et al. A review about dendrimers: Synthesis, types, characterization and applications. IJAPBC, 2015, 4: 44–59Google Scholar
  6. 6.
    Astruc D, Boisselier E, Ornelas C. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev, 2010, 110: 1857–1959CrossRefGoogle Scholar
  7. 7.
    Vogtle F, Richard G, Werner N. Chapter 4. Types of dendrimers and their synthesis. In: Dendrimer Chemistry: Concepts, Syntheses, Properties, Applications, Wiley-VCH Verlag, 2009Google Scholar
  8. 8.
    Rupp R, Rosenthal, SL, Stanberry LR. VivaGel™ (SPL7013 Gel): a candidate dendrimer-microbicide for the prevention of HIV and HSV infection. Int J Nanomedicine, 2007, 2: 561–566Google Scholar
  9. 9.
    Starpharma, Available at http://www.starpharma.comGoogle Scholar
  10. 10.
    Janib SM, Moses AS, MacKay JA. Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliver Rev, 2010, 62: 1052–1063CrossRefGoogle Scholar
  11. 11.
    Ma Y, Mou Q, Wang D, et al. Dendritic polymers for theranostics. Theranostics, 2016, 6: 930–947CrossRefGoogle Scholar
  12. 12.
    Liu Y, Zhang N. Gadolinium loaded nanoparticles in theranostic magnetic resonance imaging. Biomaterials, 2012, 33: 5363–5375CrossRefGoogle Scholar
  13. 13.
    Nottelet B, Darcos V, Coudane J. Aliphatic polyesters for medical imaging and theranostic applications. Eur J Pharm Biopharm, 2015, 97: 350–370CrossRefGoogle Scholar
  14. 14.
    McMahon MT, Bulte JWM. Two decades of dendrimers as versatile MRI agents: a tale with and without metals. WIREs Nanomed Nanobiotechnol, 2017, 2: e1496Google Scholar
  15. 15.
    Dhar S, Liu Z, Thomale J, et al. Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. J Am Chem Soc, 2008, 130: 11467–11476CrossRefGoogle Scholar
  16. 16.
    Pike DB, Ghandehari H. HPMA copolymer–cyclic RGD conjugates for tumor targeting. Adv Drug Deliver Rev, 2010, 62: 167–183CrossRefGoogle Scholar
  17. 17.
    Gao X, Luo Y, Wang Y, et al. Prostate stem cell antigen-targeted nanoparticles with dual functional properties: in vivo imaging and cancer chemotherapy. IJN, 2012, 7: 4037–4051CrossRefGoogle Scholar
  18. 18.
    Talelli M, Rijcken CJF, van Nostrum CF, et al. Micelles based on HPMA copolymers. Adv Drug Deliver Rev, 2010, 62: 231–239CrossRefGoogle Scholar
  19. 19.
    Christian DA, Cai S, Bowen DM, et al. Polymersome carriers: From self-assembly to siRNA and protein therapeutics. Eur J Pharm Biopharm, 2009, 71: 463–474CrossRefGoogle Scholar
  20. 20.
    Shubayev VI, Pisanic Ii TR, Jin S. Magnetic nanoparticles for theragnostics. Adv Drug Deliver Rev, 2009, 61: 467–477CrossRefGoogle Scholar
  21. 21.
    Gao Z, Kennedy AM, Christensen DA, et al. Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy. Ultrasonics, 2008, 48: 260–270CrossRefGoogle Scholar
  22. 22.
    Thomas TP, Shukla R, Kotlyar A, et al. Dendrimer-based tumor cell targeting of fibroblast growth factor-1. Bioorg Medicinal Chem Lett, 2010, 20: 700–703CrossRefGoogle Scholar
  23. 23.
    Ki Choi S, Thomas T, Li MH, et al. Light-controlled release of caged doxorubicin from folate receptor-targeting PAMAM dendrimer nanoconjugate. Chem Commun, 2010, 46: 2632–2634CrossRefGoogle Scholar
  24. 24.
    Singh P, Gupta U, Asthana A, et al. Folate and Folate−PEG−PAMAM dendrimers: synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice. Bioconjugate Chem, 2008, 19: 2239–2252CrossRefGoogle Scholar
  25. 25.
    Zhao Y, Liu S, Li Y, et al. Synthesis and grafting of folate–PEG–PAMAM conjugates onto quantum dots for selective targeting of folate-receptor-positive tumor cells. J Colloid Interface Sci, 2010, 350: 44–50CrossRefGoogle Scholar
  26. 26.
    Li Y, Li Y, Zhang X, et al. Supramolecular PEGylated dendritic systems as pH/redox dual-responsive theranostic nanoplatforms for platinum drug delivery and NIR imaging. Theranostics, 2016, 6: 1293–1305CrossRefGoogle Scholar
  27. 27.
    Wiener E, Brechbiel MW, Brothers H, et al. Dendrimer-based metal chelates: A new class of magnetic resonance imaging contrast agents. Magn Reson Med, 1994, 31: 1–8CrossRefGoogle Scholar
  28. 28.
    Zhu J, Gale EM, Atanasova I, et al. Hexameric MnII dendrimer as MRI contrast agent. Chem Eur J, 2014, 20: 14507–14513CrossRefGoogle Scholar
  29. 29.
    Aime S, Caravan P. Biodistribution of gadolinium-based contrast agents, including gadolinium deposition. J Magn Reson Imag, 2009, 30: 1259–1267CrossRefGoogle Scholar
  30. 30.
    Kanal E, Tweedle MF. Residual or retained gadolinium: practical implications for radiologists and our patients. Radiology, 2015, 275: 630–634CrossRefGoogle Scholar
  31. 31.
    Aime S, Barge A, Delli Castelli D, et al. Paramagnetic Lanthanide (III) complexes as pH-sensitive chemical exchange saturation transfer (CEST) contrast agents for MRI applications. Magn Reson Med, 2002, 47: 639–648CrossRefGoogle Scholar
  32. 32.
    Zhang S, Winter P, Wu K, et al. A novel europium(III)-based MRI contrast agent. J Am Chem Soc, 2001, 123: 1517–1518CrossRefGoogle Scholar
  33. 33.
    Ruiz-Cabello J, Barnett BP, Bottomley PA, et al. Fluorine (19F) MRS and MRI in biomedicine. NMR Biomed, 2011, 24: 114–129CrossRefGoogle Scholar
  34. 34.
    Xu R, Wang Y, Wang X, et al. In vivo evaluation of a PAMAMcystamine-( Gd-DO3A) conjugate as a biodegradable macromolecular MRI contrast agent. Exp Biol Med (Maywood), 2007, 232: 1081–1089CrossRefGoogle Scholar
  35. 35.
    Klemm PJ, Floyd Iii WC, Smiles DE, et al. Improving T1 and T2 magnetic resonance imaging contrast agents through the conjugation of an esteramide dendrimer to high-water-coordination Gd(III) hydroxypyridinone complexes. Contrast Media Mol Imag, 2012, 7: 95–99CrossRefGoogle Scholar
  36. 36.
    Ye M, Qian Y, Shen Y, et al. Facile synthesis and in vivo evaluation of biodegradable dendritic MRI contrast agents. J Mater Chem, 2012, 22: 14369–14377CrossRefGoogle Scholar
  37. 37.
    Ye M, Qian Y, Tang J, et al. Targeted biodegradable dendritic MRI contrast agent for enhanced tumor imaging. J Control Release, 2013, 169: 239–245CrossRefGoogle Scholar
  38. 38.
    Li T, Qian Y, Ye M, et al. Synthesis and properties of a biodegradable dendritic magnetic resonance imaging contrast agent. Chin J Chem, 2014, 32: 91–96CrossRefGoogle Scholar
  39. 39.
    Konda SD, Aref M, Wang S, et al. Specific targeting of folatedendrimer MRI contrast agents to the high affinity folate receptor expressed in ovarian tumor xenografts. Magna, 2001, 12: 104–113Google Scholar
  40. 40.
    Mohs AM, Lu ZR. Gadolinium(III)-based blood-pool contrast agents for magnetic resonance imaging: status and clinical potential. Expert Opin Drug Deliver, 2007, 4: 149–164CrossRefGoogle Scholar
  41. 41.
    Kaneshiro TL, Jeong EK, Morrell G, et al. Synthesis and evaluation of globular Gd-DOTA-monoamide conjugates with precisely controlled nanosizes for magnetic resonance angiography. Biomacromolecules, 2008, 9: 2742–2748CrossRefGoogle Scholar
  42. 42.
    Cyran CC, Fu Y, Raatschen HJ, et al. New macromolecular polymeric MRI contrast agents for application in the differentiation of cancer from benign soft tissues. J Magn Reson Imag, 2008, 27: 581–589CrossRefGoogle Scholar
  43. 43.
    Filippi M, Catanzaro V, Patrucco D, et al. First in vivo MRI study on theranostic dendrimersomes. J Control Release, 2017, 248: 45–52CrossRefGoogle Scholar
  44. 44.
    Criscione JM, Le BL, Stern E, et al. Self-assembly of pH-responsive fluorinated dendrimer-based particulates for drug delivery and noninvasive imaging. Biomaterials, 2009, 30: 3946–3955CrossRefGoogle Scholar
  45. 45.
    Luong D, Sau S, Kesharwani P, et al. Polyvalent folate-dendrimercoated iron oxide theranostic nanoparticles for simultaneous magnetic resonance imaging and precise cancer cell targeting. Biomacromolecules, 2017, 18: 1197–1209CrossRefGoogle Scholar
  46. 46.
    Almutairi A, Rossin R, Shokeen M, et al. Biodegradable dendritic positron-emitting nanoprobes for the noninvasive imaging of angiogenesis. Proc Natl Acad Sci USA, 2009, 106: 685–690CrossRefGoogle Scholar
  47. 47.
    Dijkgraaf I, Rijnders AY, Soede A, et al. Synthesis of DOTAconjugated multivalent cyclic-RGD peptide dendrimers via 1,3-dipolar cycloaddition and their biological evaluation: implications for tumor targeting and tumor imaging purposes. Org Biomol Chem, 2007, 5: 935–944CrossRefGoogle Scholar
  48. 48.
    Kobayashi H, Sato N, Saga T, et al. Monoclonal antibody-dendrimer conjugates enable radiolabeling of antibody with markedly high specific activity with minimal loss of immunoreactivity. Eur J Nucl Med, 2000, 27: 1334–1339CrossRefGoogle Scholar
  49. 49.
    Kobayashi H, Wu C, Kim MK, et al. Evaluation of the in vivo biodistribution of indium-111 and yttrium-88 labeled dendrimer-1B4M-DTPA and its conjugation with anti-tac monoclonal antibody. Bioconjugate Chem, 1999, 10: 103–111CrossRefGoogle Scholar
  50. 50.
    Li N, Jin Y, Xue LZ, et al. 188Re-Labeled hyperbranched polysulfonamine as a robust tool for targeted cancer diagnosis and radioimmunotherapy. Chin J Polym Sci, 2013, 3: 530–540CrossRefGoogle Scholar
  51. 51.
    Zhu J, Zhao L, Cheng Y, et al. Radionuclide 131I-labeled multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors. Nanoscale, 2015, 7: 18169–18178CrossRefGoogle Scholar
  52. 52.
    Zhao L, Zhu J, Cheng Y, et al. Chlorotoxin-conjugated multifunctional dendrimers labeled with radionuclide 131I for single photon emission computed tomography imaging and radiotherapy of gliomas. ACS Appl Mater Interfaces, 2015, 7: 19798–19808CrossRefGoogle Scholar
  53. 53.
    Grünwald GK, Vetter A, Klutz K, et al. Systemic image-guided liver cancer radiovirotherapy using dendrimer-coated adenovirus encoding the sodium iodide symporter as theranostic gene. J Nucl Med, 2013, 54: 1450–1457CrossRefGoogle Scholar
  54. 54.
    Yordanov AT, Lodder AL, Woller EK, et al. Novel iodinated dendritic nanoparticles for computed tomography (CT) imaging. Nano Lett, 2002, 2: 595–599CrossRefGoogle Scholar
  55. 55.
    Mendoza-Nava H, Ferro-Flores G, Ramírez FM, et al. 177Lu-dendrimer conjugated to folate and bombesin with gold nanoparticles in the dendritic cavity: a potential theranostic radiopharmaceutical. J Nanomaterials, 2016, 2016: 1–11CrossRefGoogle Scholar
  56. 56.
    Guo R, Shi X. Dendrimers in cancer therapeutics and diagnosis. CDM, 2012, 13: 1097–1109CrossRefGoogle Scholar
  57. 57.
    Li D, Wen S, Shi X. Dendrimer-entrapped metal colloids as imaging agents. WIREs Nanomed Nanobiotechnol, 2015, 7: 678–690CrossRefGoogle Scholar
  58. 58.
    Qiao Z, Shi X. Dendrimer-based molecular imaging contrast agents. Prog Polymer Sci, 2015, 44: 1–27CrossRefGoogle Scholar
  59. 59.
    Peng C, Wang H, Guo R, et al. Acetylation of dendrimer-entrapped gold nanoparticles: Synthesis, stability, and X-ray attenuation properties. J Appl Polym Sci, 2011, 119: 1673–1682CrossRefGoogle Scholar
  60. 60.
    Wang H, Zheng L, Peng C, et al. Computed tomography imaging of cancer cells using acetylated dendrimer-entrapped gold nanoparticles. Biomaterials, 2011, 32: 2979–2988CrossRefGoogle Scholar
  61. 61.
    Wang H, Zheng L, Peng C, et al. Folic acid-modified dendrimerentrapped gold nanoparticles as nanoprobes for targeted CT imaging of human lung adencarcinoma. Biomaterials, 2013, 34: 470–480CrossRefGoogle Scholar
  62. 62.
    Vinegoni C, Feruglio PF, Cortez-Retamozo V, et al. Imaging of molecular probe activity with Born-normalized fluorescence optical projection tomography. Opt Lett, 2010, 35: 1088–1090CrossRefGoogle Scholar
  63. 63.
    Guo R, Li R, Li X, et al. Dual-functional alginic acid hybrid nanospheres for cell imaging and drug delivery. Small, 2009, 5: 709–717CrossRefGoogle Scholar
  64. 64.
    Connor EE, Mwamuka J, Gole A, et al. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small, 2005, 1: 325–327CrossRefGoogle Scholar
  65. 65.
    Peng C, Zheng L, Chen Q, et al. PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials, 2012y, 33: 1107–1119Google Scholar
  66. 66.
    Peng C, Qin J, Zhou B, et al. Targeted tumor CT imaging using folic acid-modified PEGylated dendrimer-entrapped gold nanoparticles. Polym Chem, 2013, 4: 4412–4424CrossRefGoogle Scholar
  67. 67.
    Liu H, Wang H, Xu Y, et al. Lactobionic acid-modified dendrimerentrapped gold nanoparticles for targeted computed tomography imaging of human hepatocellular carcinoma. ACS Appl Mater Interfaces, 2014, 6: 6944–6953CrossRefGoogle Scholar
  68. 68.
    Cao Y, He Y, Liu H, et al. Targeted CT imaging of human hepatocellular carcinoma using low-generation dendrimer-entrapped gold nanoparticles modified with lactobionic acid. J Mater Chem B, 2015, 3: 286–295CrossRefGoogle Scholar
  69. 69.
    Liu H, Wang H, Xu Y, et al. Synthesis of PEGylated low generation dendrimer-entrapped gold nanoparticles for CT imaging applications. Nanoscale, 2014, 6: 4521–4526CrossRefGoogle Scholar
  70. 70.
    Liu H, Xu Y, Wen S, et al. Facile hydrothermal synthesis of low generation dendrimer-stabilized gold nanoparticles for in vivo computed tomography imaging applications. Polym Chem, 2013, 4: 1788–1795CrossRefGoogle Scholar
  71. 71.
    Liu H, Xu Y, Wen S, et al. Targeted tumor computed tomography imaging using low-generation dendrimer-stabilized gold nanoparticles. Chem Eur J, 2013, 19: 6409–6416CrossRefGoogle Scholar
  72. 72.
    Guo R, Wang H, Peng C, et al. Enhanced X-ray attenuation property of dendrimer-entrapped gold nanoparticles complexed with diatrizoic acid. J Mater Chem, 2011, 21: 5120–5127CrossRefGoogle Scholar
  73. 73.
    Peng C, Li K, Cao X, et al. Facile formation of dendrimer-stabilized gold nanoparticles modified with diatrizoic acid for enhanced computed tomography imaging applications. Nanoscale, 2012, 4: 6768–6778CrossRefGoogle Scholar
  74. 74.
    Backer MV, Gaynutdinov TI, Patel V, et al. Vascular endothelial growth factor selectively targets boronated dendrimers to tumor vasculature. Mol Cancer Ther, 2005, 4: 1423–1429CrossRefGoogle Scholar
  75. 75.
    Nguyen QT, Olson ES, Aguilera TA, et al. Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival. Proc Natl Acad Sci USA, 2010, 107: 4317–4322CrossRefGoogle Scholar
  76. 76.
    Taratula O, Schumann C, Duong T, et al. Dendrimer-encapsulated naphthalocyanine as a single agent-based theranostic nanoplatform for near-infrared fluorescence imaging and combinatorial anticancer phototherapy. Nanoscale, 2015, 7: 3888–3902CrossRefGoogle Scholar
  77. 77.
    Taratula O, Schumann C, Naleway MA, et al. A multifunctional theranostic platform based on phthalocyanine-loaded dendrimer for image-guided drug delivery and photodynamic therapy. Mol Pharm, 2013, 10: 3946–3958CrossRefGoogle Scholar
  78. 78.
    Morales-Cruz M, Figueroa CM, González-Robles T, et al. Activation of caspase-dependent apoptosis by intracellular delivery of cytochrome c-based nanoparticles. J Nanobiotechnol, 2014, 12: 1–11CrossRefGoogle Scholar
  79. 79.
    Santra S, Kaittanis C, Perez JM. Cytochrome c encapsulating theranostic nanoparticles: a novel bifunctional system for targeted delivery of therapeutic membrane-impermeable proteins to tumors and imaging of cancer therapy. Mol Pharm, 2010, 7: 1209–1222CrossRefGoogle Scholar
  80. 80.
    Caminade AM, Hameau AÃ, Majoral JP. Multicharged and/or water-soluble fluorescent dendrimers: properties and uses. Chem Eur J, 2009, 15: 9270–9285CrossRefGoogle Scholar
  81. 81.
    Griffe L, Poupot M, Marchand P, et al. Multiplication of human natural killer cells by nanosized phosphonate-capped dendrimers. Angew Chem Int Ed, 2007, 46: 2523–2526CrossRefGoogle Scholar
  82. 82.
    Poupot M, Griffe L, Marchand P, et al. Design of phosphorylated dendritic architectures to promote human monocyte activation. FASEB J, 2006, 20: 2339–2351CrossRefGoogle Scholar
  83. 83.
    Hayder M, Poupot M, Baron M, et al. A phosphorus-based dendrimer targets inflammation and osteoclastogenesis in experimental arthritis. Sci Translational Med, 2011, 3: 81ra35–81ra35CrossRefGoogle Scholar
  84. 84.
    Caminade AM, Fruchon S, Turrin CO, et al. The key role of the scaffold on the efficiency of dendrimer nanodrugs. Nat Commun, 2015, 6: 7722CrossRefGoogle Scholar
  85. 85.
    Poupot M, Turrin CO, Caminade AM, et al. Poly(phosphorhydrazone) dendrimers: yin and yang of monocyte activation for human NK cell amplification applied to immunotherapy against multiple myeloma. NanoMed-Nanotechnol Biol Med, 2016, 12: 2321–2330CrossRefGoogle Scholar
  86. 86.
    El Brahmi N, El Kazzouli S, Mignani SM, et al. Original multivalent copper(II)-conjugated phosphorus dendrimers and corresponding mononuclear copper(II) complexes with antitumoral activities. Mol Pharm, 2013, 10: 1459–1464CrossRefGoogle Scholar
  87. 87.
    Mignani S, El Brahmi N, Eloy L, et al. Anticancer copper(II) phosphorus dendrimers are potent proapoptotic Bax activators. Eur J Medicinal Chem, 2017, 132: 142–156CrossRefGoogle Scholar
  88. 88.
    Wei P, Chen J, Hu Y, et al. Dendrimer-stabilized gold nanostars as a multifunctional theranostic nanoplatform for CT imaging, photothermal therapy, and gene silencing of tumors. Adv Healthcare Mater, 2016, 5: 3203–3213CrossRefGoogle Scholar
  89. 89.
    Kong L, Xing L, Zhou B, et al. Dendrimer-modified MoS2 nanoflakes as a platform for combinational gene silencing and photothermal therapy of tumors. ACS Appl Mater Interfaces, 2017, 9: 15995–16005CrossRefGoogle Scholar
  90. 90.
    Vargas JG. Dendrimers: from the art of building precise molecules to the dissemination through the world. Braz J Pharm Sci, 2013, 49: 4–5CrossRefGoogle Scholar
  91. 91.
    Kalhapure RS, Kathiravan MK, Akamanchi KG, et al. Dendrimers —from organic synthesis to pharmaceutical applications: an update. Pharmaceutical Dev Tech, 2015, 20: 22–40CrossRefGoogle Scholar
  92. 92.
    Mignani S, Rodrigues J, Tomas H, et al. Bench-to-bedside translation of dendrimers: Reality or utopia? A concise analysis. Adv Drug Deliver Rev, 2017, 10.1016/j.addr.2017.11.007Google Scholar
  93. 93.
    Mignani S, Kazzouli SE, Bousmina M, et al. Dendrimer space concept for innovative nanomedicine: A futuristic vision for medicinal chemistry. Prog Polymer Sci, 2013, 38: 993–1008Google Scholar
  94. 94.
    Leiro V, Garcia JP, Tomás H, et al. The present and the future of degradable dendrimers and derivatives in theranostics. Bioconjugate Chem, 2015, 26: 1182–1197CrossRefGoogle Scholar
  95. 95.
    Alberto RFR, Joao R, de Los Angeles MFM, et al. Principal physicochemical methods used to characterize dendrimer molecule complexes used as genetic therapy agents, nanovaccines or drug carriers. CPD, 2017, 23Google Scholar
  96. 96.
    Patel SK, Janjic JM. Macrophage targeted theranostics as personalized nanomedicine strategies for inflammatory diseases. Theranostics, 2015, 5: 150–172CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Chimie et de Biochimie Pharmacologiques et ToxicologiqueUniversité Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860ParisFrance
  2. 2.CQM – Centro de Quimica da Madeira, MMRGUniversidade da Madeira, Campus da PenteadaFunchalPortugal
  3. 3.School of Materials Science and Engineering/Center for Nano Energy MaterialsNorthwestern Polytechnical UniversityXi’anChina
  4. 4.Laboratoire de Chimie de Coordination du CNRSToulouse Cedex 4France
  5. 5.Université de Toulouse, UPS, INPTToulouse CedexFrance
  6. 6.State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghaiChina

Personalised recommendations