A dual-electrolyte system for photoelectrochemical hydrogen generation using CuInS2-In2O3-TiO2 nanotube array thin film

  • Charlene Ng
  • Jung-Ho Yun
  • Hui Ling Tan
  • Hao Wu
  • Rose Amal
  • Yun Hau Ng
Article Special Issue: Advanced Materials for Photoelectrochemical Cells
  • 62 Downloads

Abstract

The utilization of Na2S/Na2SO3 mixture as the electrolyte solution to stabilize sulfide anode in a photoelectrochemical cell for hydrogen evolution generally compromises the current-to-hydrogen efficiency (η-current) of the system. Here, the employment of a dual-electrolyte system, that is, Na2S/Na2SO3 mixture and pH-neutral Na2SO4 as the respective electrolyte solutions in the anode and cathode chambers of a water splitting cell is demonstrated to suppress the photocorrosion of CuInS2-In2O3-TiO2 nanotube (CIS-In2O3-TNT) heterostructure, while simultaneously boosts the η-current. Although n-type CIS and In2O3 nanoparticles can be easily formed on TNT array via facile pulse-assisted electrodeposition method, conformal deposition of the nanoparticles homogeneously on the nanotubes wall with preservation of the TNT hollow structure is shown to be essential for achieving efficient charge generation and separation within the heterostructure. In comparison to Na2S/Na2SO3 solution as the sole electrolyte in both the anode and cathode chambers, introduction of dual electrolyte is shown to not only enhance the photostability of the CIS-In2O3-TNT anode, but also lead to near-unity η-current as opposed to the merely 20% η-current of the single-electrolyte system.

Keywords

dual-electrolyte hydrogen generation photoelectrochemical TiO2 nanotubes CuInS2 

CuInS2-In2O3-TiO2纳米管阵列薄膜双电介质体系在光电化学产氢中的应用

摘要

光电化学电池产氢过程中利用 Na2S/Na2SO3混合物作为电解质溶液稳定硫化物阳极通常会牺牲电流产氢效率(ηcurrent). 本文采用Na2S/Na2SO3和pH中性的Na2SO4分别作为光解水电池的阳极和阴极电解液可有效抑制CuInS2-In2O3-TiO2 (CIS-In2O3-TNT)纳米管杂化结构的光腐蚀, 同时提高ηcurrent. 通过脉冲辅助电沉积法可将n型CIS和In2O3纳米粒子沉积在TNT阵列表面, 在保留TNT原有中空结构的前提下将纳米粒子均匀沉积在纳米管上对于在杂化结构中获得高效电荷聚集和分离非常必要. 与Na2S/Na2SO3单电解液电池相比双电解液的引入不仅提高了CIS-In2O3-TNT阳极的光稳定性, 而且ηcurrent接近于1并远高于单电解液电池(20%).

Notes

Acknowledgements

This work was supported by the Australian Research Council (DP170102895). We thank the UNSW Mark Wainwright Analytical Centre for providing access to all analytical facilities.

References

  1. 1.
    Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37–38CrossRefGoogle Scholar
  2. 2.
    Guo J, Zhou H, Ouyang S, et al. An Ag3PO4/nitridized Sr2 Nb2O7 composite photocatalyst with adjustable band structures for efficient elimination of gaseous organic pollutants under visible light irradiation. Nanoscale, 2014, 6: 7303–7311CrossRefGoogle Scholar
  3. 3.
    Yun JH, Ng YH, Huang S, et al. Wrapping the walls of n-TiO2 nanotubes with p-CuInS2 nanoparticles using pulsed-electrodeposition for improved heterojunction photoelectrodes. Chem Commun, 2011, 47: 11288–11290CrossRefGoogle Scholar
  4. 4.
    Fujishima A, Rao TN, Tryk DA. Titanium dioxide photocatalysis. J Photochem Photobiol C-Photochem Rev, 2000, 1: 1–21CrossRefGoogle Scholar
  5. 5.
    Wang H, You T, Shi W, et al. Au/TiO2/Au as a plasmonic coupling photocatalyst. J Phys Chem C, 2012, 116: 6490–6494CrossRefGoogle Scholar
  6. 6.
    Tang Y, Traveerungroj P, Tan HL, et al. Scaffolding an ultrathin CdS layer on a ZnO nanorod array using pulsed electrodeposition for improved photocharge transport under visible light illumination. J Mater Chem A, 2015, 3: 19582–19587CrossRefGoogle Scholar
  7. 7.
    Selloni A. Anatase shows its reactive side. Nat Mater, 2008, 7: 613–615CrossRefGoogle Scholar
  8. 8.
    Pan J, Liu G, Lu GQM, et al. On the true photoreactivity order of {001}, {010}, and {101} facets of anatase TiO2 crystals. Angew Chem Int Ed, 2011, 50: 2133–2137CrossRefGoogle Scholar
  9. 9.
    Kazmerski LL, Ayyagari MS, Sanborn GA. CuInS2 thin films: Preparation and properties. J Appl Phys, 1975, 46: 4865–4869CrossRefGoogle Scholar
  10. 10.
    Tang Y, Wang P, Yun JH, et al. Frequency-regulated pulsed electrodeposition of CuInS2 on ZnO nanorod arrays as visible light photoanodes. J Mater Chem A, 2015, 3: 15876–15881CrossRefGoogle Scholar
  11. 11.
    Minoura H, Tsuiki M. Anodic reactions of several reducing agents on illuminated cadmium sulfide electrode. Electrochim Acta, 1978, 23: 1377–1382CrossRefGoogle Scholar
  12. 12.
    Reber JF, Meier K. Photochemical production of hydrogen with zinc sulfide suspensions. J Phys Chem, 1984, 88: 5903–5913CrossRefGoogle Scholar
  13. 13.
    Buehler N, Meier K, Reber JF. Photochemical hydrogen production with cadmium sulfide suspensions. J Phys Chem, 1984, 88: 3261–3268CrossRefGoogle Scholar
  14. 14.
    Yun JH, Ng YH, Ye C, et al. Sodium fluoride-assisted modulation of anodized TiO2 nanotube for dye-sensitized solar cells application. ACS Appl Mater Interfaces, 2011, 3: 1585–1593CrossRefGoogle Scholar
  15. 15.
    Boiko M, Medvedkin G. Thermal oxidation of CuInSe2: Experiment and physico-chemical model. Sol Energy Mater Sol Cells, 1996, 41–42: 307–314CrossRefGoogle Scholar
  16. 16.
    Dirnstorfer I, Hofmann DM, Meister D, et al. Postgrowth thermal treatment of CuIn(Ga)Se2: Characterization of doping levels in Inrich thin films. J Appl Phys, 1999, 85: 1423–1428CrossRefGoogle Scholar
  17. 17.
    Asenjo B, Chaparro AM, Gutiérrez MT, et al. Quartz crystal microbalance study of the growth of indium(III) sulphide films from a chemical solution. Electrochim Acta, 2004, 49: 737–744CrossRefGoogle Scholar
  18. 18.
    Shankar K, Bandara J, Paulose M, et al. Highly efficient solar cells using TiO2 nanotube arrays sensitized with a donor-antenna dye. Nano Lett, 2008, 8: 1654–1659CrossRefGoogle Scholar
  19. 19.
    Jiang Z, Tang Y, Tay Q, et al. Understanding the role of nanostructures for efficient hydrogen generation on immobilized photocatalysts. Adv Energy Mater, 2013, 3: 1368–1380CrossRefGoogle Scholar
  20. 20.
    Ma Y. Synthesis of TiO2 nanotubes film and its light scattering property. Chin Sci Bull, 2005, 50: 1985CrossRefGoogle Scholar
  21. 21.
    Unnikrishnan EK, Kumar SD, Maiti B. Permeation of inorganic anions through Nafion ionomer membrane. J Membrane Sci, 1997, 137: 133–137CrossRefGoogle Scholar
  22. 22.
    Danielsson LG, Yang X. Transport of low molecular weight anions through a Nafion ionomer membrane: application to kraft cooking liquors. Anal Chem, 2000, 72: 1564–1568CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Charlene Ng
    • 1
  • Jung-Ho Yun
    • 1
  • Hui Ling Tan
    • 1
  • Hao Wu
    • 1
  • Rose Amal
    • 1
  • Yun Hau Ng
    • 1
  1. 1.Particles and Catalysis Research Group, School of Chemical EngineeringThe University of New South Wales, UNSWSydneyAustralia

Personalised recommendations