Advertisement

Science China Materials

, Volume 61, Issue 1, pp 101–111 | Cite as

Atypical BiOCl/Bi2S3 hetero-structures exhibiting remarkable photo-catalyst response

  • Muhammad Tanveer
  • Yu Wu (吴宇)
  • Muhammad Abdul Qadeer
  • Chuanbao Cao (曹传宝)
Articles
  • 1.2k Downloads

Abstract

We demonstrate the fabrication of BiOCl/Bi2S3 which is well defined at a large scale. The BiOCl/Bi2S3 hetero-structures exhibit an enhanced photo-catalytic degradation of methyl orange (MO) compared to BiOCl and Bi2S3, attributed to the interface between Bi2S3 and BiOCl, which effectively separate the photo-induced electron-hole pairs and suppress their recombination.

Keywords

bismuth sulfide hetero-structures photo-catalyst response 

具有显著光催化响应的非典型BiOCl/Bi2S3异质结构

摘要

本文首次合成了具有独特形貌的异质结构BiOCl/Bi2S3. 相对于单一的BiOCl和Bi2S3, BiOCl/Bi2S3异质结构能有效地分离光生电子-空穴对以及抑制它们的再结合, 从而表现出更好的光催化降解甲基橙性能.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21371023), and the National Key Basic Research Program of China (2015CB251100).

Supplementary material

40843_2017_9135_MOESM1_ESM.pdf (2.1 mb)
Atypical BiOCl/Bi2S3 hetero-structures exhibiting remarkable photo-catalyst response

References

  1. 1.
    Tahir M, Mahmood N, Zhu J, et al. One dimensional graphitic carbon nitrides as effective metal-free oxygen reduction catalysts. Sci Rep, 2015, 5: 12389CrossRefGoogle Scholar
  2. 2.
    Tahir M, Cao C, Butt FK, et al. Tubular graphitic-C3N4: a prospective material for energy storage and green photocatalysis. J Mater Chem A, 2013, 1: 13949–13955CrossRefGoogle Scholar
  3. 3.
    Tahir M, Cao C, Mahmood N, et al. Multifunctional g-C3N4 nanofibers: a template-free fabrication and enhanced optical, electrochemical, and photocatalyst properties. ACS Appl Mater Interfaces, 2014, 6: 1258–1265CrossRefGoogle Scholar
  4. 4.
    Wu Y, Cao C, Zhu Y, et al. Cube-shaped hierarchical LiNi1/3Co1/3-Mn1/3O2 with enhanced growth of nanocrystal planes as highperformance cathode materials for lithium-ion batteries. J Mater Chem A, 2015, 3: 15523–15528CrossRefGoogle Scholar
  5. 5.
    Meng R, Jiang J, Liang Q, et al. Design of graphene-like gallium nitride and WS2/WSe2 nanocomposites for photocatalyst applications. Sci China Mater, 2016, 59: 1027–1036CrossRefGoogle Scholar
  6. 6.
    Wu Y, Zhang J, Cao C. Scalable and general synthesis of spinel manganese-based cathodes with hierarchical yolk-shell structure and superior lithium storage properties. Nano Res, 2017, doi 10.1007/s12274-017-1625-0Google Scholar
  7. 7.
    Lu X, Li Y, Bai X, et al. Multifunctional Cu1.94S-Bi2S3@polymer nanocomposites for computed tomography imaging guided photothermal ablation. Sci China Mater, 2017, 60: 777–788CrossRefGoogle Scholar
  8. 8.
    Liu H, Ma H, Joo J, et al. Contribution of multiple reflections to light utilization efficiency of submicron hollow TiO2 photocatalyst. Sci China Mater, 2016, 59: 1017–1026CrossRefGoogle Scholar
  9. 9.
    Xi G, Yue B, Cao J, et al. Fe3O4/WO3 hierarchical core-shell structure: high-performance and recyclable visible-light photocatalysis. Chem Eur J, 2011, 17: 5145–5154CrossRefGoogle Scholar
  10. 10.
    Xi G, Ye J. Synthesis of bismuth vanadate nanoplates with exposed {001} facets and enhanced visible-light photocatalytic properties. Chem Commun, 2010, 46: 1893–1895CrossRefGoogle Scholar
  11. 11.
    Liang Q, Li Z, Bai Y, et al. Reduced-sized monolayer carbon nitride nanosheets for highly improved photoresponse for cell imaging and photocatalysis. Sci China Mater, 2017, 60: 109–118CrossRefGoogle Scholar
  12. 12.
    Wu Y, Cao C, Zhang J, et al. Hierarchical LiMn2O4 hollow cubes with exposed {111} planes as high-power cathodes for lithium-ion batteries. ACS Appl Mater Interfaces, 2016, 8: 19567–19572CrossRefGoogle Scholar
  13. 13.
    Chen Y, Tian G, Guo Q, et al. One-step synthesis of a hierarchical Bi2S3nanoflower\In2S3 nanosheet composite with efficient visiblelight photocatalytic activity. CrystEngComm, 2015, 17: 8720–8727CrossRefGoogle Scholar
  14. 14.
    Shi Y, Chen Y, Tian G, et al. One-pot controlled synthesis of seaurchin shaped Bi2S3/CdS hierarchical heterostructures with excellent visible light photocatalytic activity. Dalton Trans, 2014, 43: 12396–12404CrossRefGoogle Scholar
  15. 15.
    Zhou J, Tian G, Chen Y, et al. Growth rate controlled synthesis of hierarchical Bi2S3/In2S3 core/shell microspheres with enhanced photocatalytic activity. Sci Rep, 2015, 4: 4027CrossRefGoogle Scholar
  16. 16.
    Tahir M, Mahmood N, Zhang X, et al. Bifunctional catalysts of Co3O4@GCN tubular nanostructured (TNS) hybrids for oxygen and hydrogen evolution reactions. Nano Res, 2015, 8: 3725–3736CrossRefGoogle Scholar
  17. 17.
    Tanveer M, Cao C, Ali Z, et al. Template free synthesis of CuS nanosheet-based hierarchical microspheres: an efficient natural light driven photocatalyst. CrystEngComm, 2014, 16: 5290–5300CrossRefGoogle Scholar
  18. 18.
    Tanveer M, Cao C, Aslam I, et al. Effect of the morphology of CuS upon the photocatalytic degradation of organic dyes. RSC Adv, 2014, 4: 63447–63456CrossRefGoogle Scholar
  19. 19.
    Ali Z, Cao C, Li J, et al. Effect of synthesis technique on electrochemical performance of bismuth selenide. J Power Sources, 2013, 229: 216–222CrossRefGoogle Scholar
  20. 20.
    Ali Z, Mirza M, Cao C, et al. Wide range photodetector based on catalyst free grown indium selenide microwires. ACS Appl Mater Interfaces, 2014, 6: 9550–9556CrossRefGoogle Scholar
  21. 21.
    Aslam I, Cao C, Tanveer M, et al. A novel Z-scheme WO3/CdWO4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of organic pollutants. RSC Adv, 2015, 5: 6019–6026CrossRefGoogle Scholar
  22. 22.
    Aslam I, Cao C, Tanveer M, et al. A facile one-step fabrication of novel WO3/Fe2(WO4)3·10.7H2O porous microplates with remarkable photocatalytic activities. CrystEngComm, 2015, 17: 4809–4817CrossRefGoogle Scholar
  23. 23.
    Khalid S, Cao C, Wang L, et al. Microwave assisted synthesis of porous NiCo2O4 microspheres: application as high performance asymmetric and symmetric supercapacitors with large areal capacitance. Sci Rep, 2016, 6: 22699CrossRefGoogle Scholar
  24. 24.
    Hou J, Cao C, Idrees F, et al. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano, 2015, 9: 2556–2564CrossRefGoogle Scholar
  25. 25.
    Hou J, Cao C, Ma X, et al. From rice bran to high energy density supercapacitors: a new route to control porous structure of 3D carbon. Sci Rep, 2015, 4: 7260CrossRefGoogle Scholar
  26. 26.
    Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37–38CrossRefGoogle Scholar
  27. 27.
    Zhang T, Oyama T, Horikoshi S, et al. Photocatalytic decomposition of the sodium dodecylbenzene sulfonate surfactant in aqueous titania suspensions exposed to highly concentrated solar radiation and effects of additives. Appl Catal B-Environ, 2003, 42: 13–24CrossRefGoogle Scholar
  28. 28.
    Spadavecchia F, Cappelletti G, Ardizzone S, et al. Solar photoactivity of nano-N-TiO2 from tertiary amine: role of defects and paramagnetic species. Appl Catal B-Environ, 2010, 96: 314–322CrossRefGoogle Scholar
  29. 29.
    Sun WT, Yu Y, Pan HY, et al. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J Am Chem Soc, 2008, 130: 1124–1125CrossRefGoogle Scholar
  30. 30.
    Zhang LW, Wang YJ, Cheng HY, et al. Synthesis of porous Bi2WO6 thin films as efficient visible-light-active photocatalysts. Adv Mater, 2009, 21: 1286–1290CrossRefGoogle Scholar
  31. 31.
    Xia J, Yin S, Li H, et al. Self-assembly and enhanced photocatalytic properties of BiOI hollow microspheres via a reactable ionic liquid. Langmuir, 2011, 27: 1200–1206CrossRefGoogle Scholar
  32. 32.
    Zheng C, Cao C, Ali Z. In situ formed Bi/BiOBrxI1−x heterojunction of hierarchical microspheres for efficient visible-light photocatalytic activity. Phys Chem Chem Phys, 2015, 17: 13347–13354CrossRefGoogle Scholar
  33. 33.
    Xia J, Yin S, Li H, et al. Improved visible light photocatalytic activity of sphere-like BiOBr hollow and porous structures synthesized via a reactable ionic liquid. Dalton Trans, 2011, 40: 5249CrossRefGoogle Scholar
  34. 34.
    Lv J, Kako T, Li Z, et al. Synthesis and photocatalytic activities of NaNbO3 rods modified by In2O3 nanoparticles. J Phys Chem C, 2010, 114: 6157–6162CrossRefGoogle Scholar
  35. 35.
    Dunkle SS, Helmich RJ, Suslick KS. BiVO4 as a visible-light photocatalyst prepared by ultrasonic spray pyrolysis. J Phys Chem C, 2009, 113: 11980–11983CrossRefGoogle Scholar
  36. 36.
    Henle J, Simon P, Frenzel A, et al. Nanosized BiOX (X=Cl, Br, I) particles synthesized in reverse microemulsions. Chem Mater, 2007, 19: 366–373CrossRefGoogle Scholar
  37. 37.
    Zhang X, Ai Z, Jia F, et al. Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X=Cl, Br, I) nanoplate microspheres. J Phys Chem C, 2008, 112: 747–753CrossRefGoogle Scholar
  38. 38.
    Chang X, Yu G, Huang J, et al. Enhancement of photocatalytic activity over NaBiO3/BiOCl composite prepared by an in situ formation strategy. Catal Today, 2010, 153: 193–199CrossRefGoogle Scholar
  39. 39.
    Gao F, Zeng D, Huang Q, et al. Chemically bonded graphene/BiOCl nanocomposites as high-performance photocatalysts. Phys Chem Chem Phys, 2012, 14: 10572CrossRefGoogle Scholar
  40. 40.
    Cheng H, Huang B, Qin X, et al. A controlled anion exchange strategy to synthesize Bi2S3 nanocrystals/BiOCl hybrid architectures with efficient visible light photoactivity. Chem Commun, 2012, 48: 97–99CrossRefGoogle Scholar
  41. 41.
    Cao J, Xu B, Lin H, et al. Novel Bi2S3-sensitized BiOCl with highly visible light photocatalytic activity for the removal of rhodamine B. Catal Commun, 2012, 26: 204–208CrossRefGoogle Scholar
  42. 42.
    Butler MA. Photoelectrolysis and physical properties of the semiconducting electrode WO2. J Appl Phys, 1977, 48: 1914–1920CrossRefGoogle Scholar
  43. 43.
    Zheng L, Xu Y, Song Y, et al. Nearly monodisperse CuInS2 hierarchical microarchitectures for photocatalytic H2 evolution under visible light. Inorg Chem, 2009, 48: 4003–4009CrossRefGoogle Scholar
  44. 44.
    Zhu L, Xie Y, Zheng X, et al. Growth of compound BiIII-VIA-VIIA crystals with special morphologies under mild conditions. Inorg Chem, 2002, 41: 4560–4566CrossRefGoogle Scholar
  45. 45.
    Yang J, Qi L, Lu C, et al. Morphosynthesis of rhombododecahedral silver cages by self-assembly coupled with precursor crystal templating. Angew Chem Int Ed, 2005, 44: 598–603CrossRefGoogle Scholar
  46. 46.
    Li L, Cao R, Wang Z, et al. Template synthesis of hierarchical Bi2E3 (E=S, Se, Te) core-shell microspheres and their electrochemical and photoresponsive properties. J Phys Chem C, 2009, 113: 18075–18081CrossRefGoogle Scholar
  47. 47.
    Zhou X, Hu C, Hu X, et al. Plasmon-assisted degradation of toxic pollutants with Ag-AgBr/Al2O3 under visible-light irradiation. J Phys Chem C, 2010, 114: 2746–2750CrossRefGoogle Scholar
  48. 48.
    Yang Y, Zhang G, Yu S, et al. Efficient removal of organic contaminants by a visible light driven photocatalyst Sr6Bi2O9. Chem Eng J, 2010, 162: 171–177CrossRefGoogle Scholar
  49. 49.
    Madhusudan P, Ran J, Zhang J, et al. Novel urea assisted hydrothermal synthesis of hierarchical BiVO4/Bi2O2CO3 nanocomposites with enhanced visible-light photocatalytic activity. Appl Catal BEnviron, 2011, 110: 286–295CrossRefGoogle Scholar
  50. 50.
    Linsebigler AL, Lu G, Yates JT. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev, 1995, 95: 735–758CrossRefGoogle Scholar
  51. 51.
    Hirakawa T, Nosaka Y. Properties of O2 ·-and OH·formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions. Langmuir, 2002, 18: 3247–3254CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Muhammad Tanveer
    • 1
    • 2
    • 3
  • Yu Wu (吴宇)
    • 1
  • Muhammad Abdul Qadeer
    • 4
  • Chuanbao Cao (曹传宝)
    • 1
  1. 1.Research Centre of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green ApplicationsBeijing Institute of TechnologyBeijingChina
  2. 2.Department of Physics, School of Physical SciencesUniversity of the PunjabLahorePakistan
  3. 3.Department of PhysicsUniversity of Lahore (UOL) (Gujrat Campus)GujratPakistan
  4. 4.Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina

Personalised recommendations