Science China Materials

, Volume 60, Issue 9, pp 839–848 | Cite as

A novel lithium-ion battery comprising Li-rich@Cr2O5 composite cathode and Li4Ti5O12 anode with controllable coulombic efficiency

  • Xiang Ding (丁翔)
  • Bangkun Zou (邹邦坤)
  • Yuxuan Li (李禹宣)
  • Xiaodong He (贺晓东)
  • Jiaying Liao (廖家英)
  • Zhongfeng Tang (唐仲丰)
  • Yu Shao (邵宇)
  • Chunhua Chen (陈春华)Email author


Through meticulous design, a Li-lacking Cr2O5 cathode is physically mixed with Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 (LNCM) cathode to form composite cathodes LNCM@xCr2O5 (x = 0, 0.1, 0.2, 0.3, 0.35, 0.4, mass ratio) in order to make use of the excess lithium produced by the Li-rich component in the first charge-discharge process. The initial coulombic efficiency (ICE) of LNCM half-cell has been significantly increased from 75.5% (x = 0) to 108.9% (x = 0.35). A novel full-cell comprising LNCM@Cr2O5 composite cathode and Li4Ti5O12 anode has been developed. Such electrode accordance, i.e., LNCM@Cr2O5//Li4Ti5O12 (“L-cell”), shows a particularly high ICE of 97.7%. The “L-cell” can transmit an outstanding reversible capacity up to 250 mA h g−1 and has 94% capacity retention during 50 cycles. It also has superior rate capacities as high as 122 and 94 mA h g−1 at 1.25 and 2.5 A g−1 current densities, which are even better in comparison of Li-rich//graphite full-cell (“G-cell”). The high performance of “L-cell” benefiting from the well-designed coulombic efficiency accordance mechanism displays a great potential for fast charge-discharge applications in future high-energy lithium ion batteries.


Li-rich cathode chromium oxide lithium titanium oxide electrode accordance rate capability 



本文将缺锂态的Cr2O5正极材料与Li1.2Ni0.13Co0.13Mn0.54O2(LNCM)富锂相正极材料进行物理混合, 形成了复合正极材料LNCM@xCr2O5(x = 0,0.1,0.2,0.3,0.35, 0.4), 从而在第一次充放电过程中达到有效利用富锂相所产生的不可逆的锂离子. 复合之后, LNCM半电池的首次库仑效率(ICE)得到显著提高, 从75.5(x = 0)提高到了108.9(x = 0.35). LNCM@Cr2O5复合正极材料和Li4Ti5O12负极材料匹配而成的新型锂离子全电池, 即LNCM@Cr2O5//Li4Ti5O12(L电池)表现出高达97.7的ICE. 不仅如此, L电池还表现出了高达250 mA h g—1的可逆容量, 并且 在循环50次之后仍具有94%的容量保持率. 此外, 在1.25和2.5 A g—1电流密度下, 它还具有高达122和94 mA h g—1的放电比容量, 远远优于LNCM//石墨全电池(G电池). L电池的高性能得益于精心设计的库仑效率匹配机制, 并且在未来高能量锂离子电池的快速充放电应用中表现出巨大的潜力.



This work was supported by the National Natural Science Foundation of China (51577175), and NSAF (U1630106). We are also grateful to Elementec Ltd. in Suzhou for its technical support.

Supplementary material

40843_2017_9083_MOESM1_ESM.pdf (970 kb)
A novel lithium-ion battery comprising Li-rich@Cr2O5 composite cathode and Li4Ti5O12 anode with controllable coulombic efficiency


  1. 1.
    Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature, 2012, 488: 294–303CrossRefGoogle Scholar
  2. 2.
    Yi TF, Han X, Yang SY, et al. Enhanced electrochemical performance of Li-rich low-Co Li1.2Mn0.56Ni0.16Co0.08−xAlxO2 (0≤x≤0.08) as cathode materials. Sci China Mater, 2016, 59: 618–628CrossRefGoogle Scholar
  3. 3.
    Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science, 2011, 334: 928–935CrossRefGoogle Scholar
  4. 4.
    Zeng L, Pan A, Liang S, et al. Novel synthesis of V2O5 hollow microspheres for lithium ion batteries. Sci China Mater, 2016, 59: 567–573CrossRefGoogle Scholar
  5. 5.
    Hao J, Liu H, Ji Y, et al. Synthesis and electrochemical performance of Sn-doped LiNi0.5Mn1.5O4 cathode material for high-voltage lithium-ion batteries. Sci China Mater, 2017, 60: 315–323CrossRefGoogle Scholar
  6. 6.
    Padhi AK. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc, 1997, 144: 1188–1194CrossRefGoogle Scholar
  7. 7.
    Zou BK, Ma XH, Tang ZF, et al. High rate LiMn2O4/carbon nanotube composite prepared by a two-step hydrothermal process. J Power Sources, 2014, 268: 491–497CrossRefGoogle Scholar
  8. 8.
    Wu N, Wu H, Yuan W, et al. Facile synthesis of one-dimensional LiNi0.8Co0.15Al0.05O2 microrods as advanced cathode materials for lithium ion batteries. J Mater Chem A, 2015, 3: 13648–13652CrossRefGoogle Scholar
  9. 9.
    Johnson CS, Kim JS, Lefief C, et al. The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3·(1−x)LiMn0.5Ni0.5O2 electrodes. Electrochem Commun, 2004, 6: 1085–1091CrossRefGoogle Scholar
  10. 10.
    Johnson CS, Li N, Lefief C, et al. Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1−x) LiMn0.333Ni0.333Co0.333O2(0 ≤x ≤ 0.7). Chem Mater, 2008, 20: 6095–6106CrossRefGoogle Scholar
  11. 11.
    Shi JL, Zhang JN, He M, et al. Mitigating voltage decay of Li-rich cathode material via increasing Ni content for lithium-ion batteries. ACS Appl Mater Interfaces, 2016, 8: 20138–20146CrossRefGoogle Scholar
  12. 12.
    Martha SK, Nanda J, Veith GM, et al. Electrochemical and rate performance study of high-voltage lithium-rich composition: Li1.2Mn0.525Ni0.175Co0.1O2. J Power Sources, 2012, 199: 220–226CrossRefGoogle Scholar
  13. 13.
    Wu Y, Vadivel Murugan A, Manthiram A. Surface modification of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes by AlPO4. J Electrochem Soc, 2008, 155: A635CrossRefGoogle Scholar
  14. 14.
    Xu H, Deng S, Chen G. Improved electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 by Mg doping for lithium ion battery cathode material. J Mater Chem A, 2014, 2: 15015–15021CrossRefGoogle Scholar
  15. 15.
    Zhang X, Belharouak I, Li L, et al. Structural and electrochemical study of Al2O3 and TiO2 coated Li1.2Ni0.13Mn0.54Co0.13O2 cathode material using ALD. Adv Energ Mater, 2013, 3: 1299–1307CrossRefGoogle Scholar
  16. 16.
    Liu J, Reeja-Jayan B, Manthiram A. Conductive surface modification with aluminum of high capacity layered Li[Li0.2Mn0.54-Ni0.13Co0.13]O2 cathodes. J Phys Chem C, 2010, 114: 9528–9533CrossRefGoogle Scholar
  17. 17.
    Zheng F, Yang C, Xiong X, et al. Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade. Angew Chem Int Ed, 2015, 54: 13058–13062CrossRefGoogle Scholar
  18. 18.
    Lee E, Park JS, Wu T, et al. Role of Cr3+/Cr6+ redox in chromiumsubstituted Li2MnO3·LiNi1/2Mn1/2O2 layered composite cathodes: electrochemistry and voltage fade. J Mater Chem A, 2015, 3: 9915–9924CrossRefGoogle Scholar
  19. 19.
    He Z, Wang Z, Chen H, et al. Electrochemical performance of zirconium doped lithium rich layered Li1.2Mn0.54Ni0.13Co0.13O2 oxide with porous hollow structure. J Power Sources, 2015, 299: 334–341CrossRefGoogle Scholar
  20. 20.
    Qiao QQ, Qin L, Li GR, et al. Sn-stabilized Li-rich layered Li (Li0.17Ni0.25Mn0.58)O2 oxide as a cathode for advanced lithium-ion batteries. J Mater Chem A, 2015, 3: 17627–17634CrossRefGoogle Scholar
  21. 21.
    Sun S, Wan N, Wu Q, et al. Surface-modified Li[Li0.2Ni0.17Co0.07-Mn0.56]O2 nanoparticles with MgF2 as cathode for Li-ion battery. Solid State Ion, 2015, 278: 85–90CrossRefGoogle Scholar
  22. 22.
    Yu H, Zhou H. High-energy cathode materials (Li2MnO3‒LiMO2) for lithium-ion batteries. J Phys Chem Lett, 2013, 4: 1268–1280CrossRefGoogle Scholar
  23. 23.
    Gao J, Kim J, Manthiram A. High capacity Li[Li0.2Mn0.54Ni0.13-Co0.13]O2‒V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries. Electrochem Commun, 2009, 11: 84–86CrossRefGoogle Scholar
  24. 24.
    Wu F, Wang Z, Su Y, et al. Li[Li0.2Mn0.54Ni0.13Co0.13]O2‒MoO3 composite cathodes with low irreversible capacity loss for lithium ion batteries. J Power Sources, 2014, 247: 20–25CrossRefGoogle Scholar
  25. 25.
    Liu JL, Wang J, Xia YY. A new rechargeable lithium-ion battery with a xLi2MnO3·(1−x)LiMn0.4Ni0.4Co0.2O2 cathode and a hard carbon anode. Electrochim Acta, 2011, 56: 7392–7396CrossRefGoogle Scholar
  26. 26.
    Wang T, Chen Z, Zhao R, et al. A new high energy lithium ion batteries consisting of 0.5Li2MnO3·0.5LiMn0.33Ni0.33Co0.33O2 and soft carbon components. Electrochim Acta, 2016, 194: 1–9CrossRefGoogle Scholar
  27. 27.
    Pham HQ, Hwang EH, Kwon YG, et al. Understanding the interfacial phenomena of a 4.7 V and 55°C Li-ion battery with Li-rich layered oxide cathode and graphite anode and its correlation to high-energy cycling performance. J Power Sources, 2016, 323: 220–230CrossRefGoogle Scholar
  28. 28.
    Zou B, Hu Q, Qu D, et al. A high energy density full lithium-ion cell based on specially matched coulombic efficiency. J Mater Chem A, 2016, 4: 4117–4124CrossRefGoogle Scholar
  29. 29.
    Elia GA, Wang J, Bresser D, et al. A new, high energy Sn–C/Li [Li0.2Ni0.4/3Co0.4/3Mn1.6/3]O2 lithium-ion battery. ACS Appl Mater Interfaces, 2014, 6: 12956–12961CrossRefGoogle Scholar
  30. 30.
    Li M, Hou X, Sha Y, et al. Facile spray-drying/pyrolysis synthesis of core–shell structure graphite/silicon-porous carbon composite as a superior anode for Li-ion batteries. J Power Sources, 2014, 248: 721–728CrossRefGoogle Scholar
  31. 31.
    Ren JG, Wu QH, Hong G, et al. Silicon-graphene composite anodes for high-energy lithium batteries. Energ Tech, 2013, 1: 77–84CrossRefGoogle Scholar
  32. 32.
    Leroy S, Blanchard F, Dedryvère R, et al. Surface film formation on a graphite electrode in Li-ion batteries: AFM and XPS study. Surf Interface Anal, 2005, 37: 773–781CrossRefGoogle Scholar
  33. 33.
    Xu B, Fell CR, Chi M, et al. Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: a joint experimental and theoretical study. Energ Environ Sci, 2011, 4: 2223–2233CrossRefGoogle Scholar
  34. 34.
    Yabuuchi N, Yoshii K, Myung ST, et al. Detailed studies of a highcapacity electrode material for rechargeable batteries, Li2MnO3−LiCo1/3Ni1/3Mn1/3O2. J Am Chem Soc, 2011, 133: 4404–4419CrossRefGoogle Scholar
  35. 35.
    Feng XY, Ding N, Wang L, et al. Synthesis and reversible lithium storage of Cr2O5 as a new high energy density cathode material for rechargeable lithium batteries. J Power Sources, 2013, 222: 184–187CrossRefGoogle Scholar
  36. 36.
    Beltrop K, Meister P, Klein S, et al. Does size really matter? New insights into the intercalation behavior of anions into a graphitebased positive electrode for dual-ion batteries. Electrochim Acta, 2016, 209: 44–55CrossRefGoogle Scholar
  37. 37.
    Rothermel S, Meister P, Schmuelling G, et al. Dual-graphite cells based on the reversible intercalation of bis(trifluoromethanesulfonyl) imide anions from an ionic liquid electrolyte. Energ Environ Sci, 2014, 7: 3412–3423CrossRefGoogle Scholar
  38. 38.
    Balabajew M, Reinhardt H, Bock N, et al. In-situ Raman study of the intercalation of bis(trifluoromethylsulfonyl)imid ions into graphite inside a dual-ion cell. Electrochim Acta, 2016, 211: 679–688CrossRefGoogle Scholar
  39. 39.
    Choi NS, Han JG, Ha SY, et al. Recent advances in the electrolytes for interfacial stability of high-voltage cathodes in lithium-ion batteries. RSC Adv, 2015, 5: 2732–2748CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Xiang Ding (丁翔)
    • 1
  • Bangkun Zou (邹邦坤)
    • 1
  • Yuxuan Li (李禹宣)
    • 1
  • Xiaodong He (贺晓东)
    • 1
  • Jiaying Liao (廖家英)
    • 1
  • Zhongfeng Tang (唐仲丰)
    • 1
  • Yu Shao (邵宇)
    • 1
  • Chunhua Chen (陈春华)
    • 1
    Email author
  1. 1.CAS Key Laboratory of Materials for Energy Conversions, Department of Materials Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and TechnologyUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations