Advertisement

Science China Materials

, Volume 60, Issue 9, pp 829–838 | Cite as

Enhanced performance of solar cells via anchoring CuGaS2 quantum dots

  • Jinjin Zhao (赵晋津)Email author
  • Zhenghao Liu (刘正浩)
  • Hao Tang (唐浩)
  • Chunmei Jia (贾春媚)
  • Xingyu Zhao (赵星宇)
  • Feng Xue (薛峰)
  • Liyu Wei (魏丽玉)
  • Guoli Kong (孔国丽)
  • Chen Wang (王晨)
  • Liu Jinxi (刘金喜)Email author
Articles

Abstract

Ternary I–III–VI quantum dots (QDs) of chalcopyrite semiconductors exhibit excellent optical properties in solar cells. In this study, ternary chalcopyrite CuGaS2 nanocrystals (2–5 nm) were one-pot anchored on TiO2 nanoparticles (TiO2@CGS) without any long ligand. The solar cell with TiO2@CuGaS2/N719 has a power conversion efficiency of 7.4%, which is 23% higher than that of monosensitized dye solar cell. Anchoring CuGaS2 QDs on semiconductor nanoparticles to form QDs/dye co-sensitized solar cells is a promising and feasible approach to enhance light absorption, charge carrier generation as well as to facilitate electron injection comparing to conventional mono-dye sensitized solar cells.

Keywords

CuGaS2 quantum dots TiO2 nanoparticles solar cells photo-anode 

铆钉CuGaS2量子点对提高太阳电池光伏性能的研究

摘要

三元I-III-VI族黄铜矿量子点作为太阳电池的敏化剂表现出优异的光学性质. 我们采用一步法将2-5纳米的三元黄铜矿CuGaS2量子点铆钉在TiO2纳米颗粒上, 不通过任何有机分子作为链接制备出了TiO2@CGS复合材料. 研究发现量子点和染料TiO2@CuGaS2/N719共敏化太阳电池效率达到7.4%, 相对于单敏化染料太阳电池而言,其电池效率提高了23%. CuGaS2量子点铆钉在半导体纳米颗粒增强了共敏化太阳电池的光吸收能力、 增加了电荷载流子数量, 促进了电子有效注入, 具有十分广阔的应用空间.

Notes

Acknowledgements

The authors thank the financial support from the National Key Research and Development Program of China (2016YFA0201001), the National Natural Science Foundation of China (11627801, 51102172 and 11772207), Science and Technology Plan of Shenzhen City (JCYJ20160331191436180), the Leading Talents of Guangdong Province Program (2016LJ06C372), the Natural Science Foundation for Outstanding Young Researcher in Hebei Province (E2016210093), the Key Program of Educational Commission of Hebei Province of China (ZD2016022), the Youth Top-notch Talents Supporting Plan of Hebei Province, the Graduate Innovation Foundation of Shijiazhuang Tiedao University, Hebei Provincial Key Laboratory of Traffic Engineering materials, and Hebei Key Discipline Construction Project.

Supplementary material

40843_2017_9078_MOESM1_ESM.pdf (337 kb)
Enhanced Performance of Solar Cells via Anchoring CuGaS2 Quantum Dots Enhanced performance of solar cells via anchoring CuGaS2 quantum dots

References

  1. 1.
    Kamat PV. Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C, 2008, 112: 18737–18753CrossRefGoogle Scholar
  2. 2.
    Nozik AJ. Quantum dot solar cells. Phys E-Low-dimensional Syst Nanostruct, 2002, 14: 115–120CrossRefGoogle Scholar
  3. 3.
    Sargent EH. Colloidal quantum dot solar cells. Nat Photon, 2012, 6: 133–135CrossRefGoogle Scholar
  4. 4.
    Zhao H, Wu Q, Hou J, et al. Enhanced light harvesting and electron collection in quantum dot sensitized solar cells by TiO2 passivation on ZnO nanorod arrays. Sci China Mater, 2017, 60: 239–250CrossRefGoogle Scholar
  5. 5.
    Ren F, Li S, He C. Electrolyte for quantum dot-sensitized solar cells assessed with cyclic voltammetry. Sci China Mater, 2015, 58: 490–495CrossRefGoogle Scholar
  6. 6.
    Grätzel M. Dye-sensitized solar cells. J Photochem PhotoBiol CPhotochem Rev, 2003, 4: 145–153CrossRefGoogle Scholar
  7. 7.
    Chang JY, Chang SC, Tzing SH, et al. Development of nonstoichiometric CuInS2 as a light-harvesting photoanode and catalytic photocathode in a sensitized solar cell. ACS Appl Mater Interfaces, 2014, 6: 22272–22281CrossRefGoogle Scholar
  8. 8.
    Huang X, Huang S, Zhang Q, et al. A flexible photoelectrode for CdS/CdSe quantum dot-sensitized solar cells (QDSSCs). Chem Commun, 2011, 47: 2664–2666CrossRefGoogle Scholar
  9. 9.
    Kim MR, Ma D. Quantum-dot-based solar cells: recent advances, strategies, and challenges. J Phys Chem Lett, 2015, 6: 85–99CrossRefGoogle Scholar
  10. 10.
    Zheng X, Yu D, Xiong FQ, et al. Controlled growth of semiconductor nanofilms within TiO2 nanotubes for nanofilm sensitized solar cells. Chem Commun, 2014, 50: 4364–4367CrossRefGoogle Scholar
  11. 11.
    Coughlan C, Ibáñez M, Dobrozhan O, et al. Compound copper chalcogenide nanocrystals. Chem Rev, 2017, 117: 5865–6109CrossRefGoogle Scholar
  12. 12.
    Tian J, Cao G. Control of nanostructures and interfaces of metal oxide semiconductors for quantum-dots-sensitized solar cells. J Phys Chem Lett, 2015, 6: 1859–1869CrossRefGoogle Scholar
  13. 13.
    Hossain MA, Jennings JR, Koh ZY, et al. Carrier generation and collection in CdS/CdSe-sensitized SnO2 solar cells exhibiting unprecedented photocurrent densities. ACS Nano, 2011, 5: 3172–3181CrossRefGoogle Scholar
  14. 14.
    Kongkanand A, Tvrdy K, Takechi K, et al. Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe−TiO2 architecture. J Am Chem Soc, 2008, 130: 4007–4015CrossRefGoogle Scholar
  15. 15.
    Lee HJ, Bang J, Park J, et al. Multilayered semiconductor (CdS/ CdSe/ZnS)-sensitized TiO2 mesoporous solar cells: all prepared by successive ionic layer adsorption and reaction processes. Chem Mater, 2010, 22: 5636–5643CrossRefGoogle Scholar
  16. 16.
    Lee YL, Lo YS. highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv Funct Mater, 2009, 19: 604–609CrossRefGoogle Scholar
  17. 17.
    Ren S, Chang LY, Lim SK, et al. Inorganic–organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires. Nano Lett, 2011, 11: 3998–4002CrossRefGoogle Scholar
  18. 18.
    Robel I, Subramanian V, Kuno M, et al. Quantum dot solar cells. Harvesting light energy with cdse nanocrystals molecularly linked to mesoscopic TiO2 films. J Am Chem Soc, 2006, 128: 2385–2393CrossRefGoogle Scholar
  19. 19.
    Santra PK, Kamat PV. Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%. J Am Chem Soc, 2012, 134: 2508–2511CrossRefGoogle Scholar
  20. 20.
    Santra PK, Kamat PV. Tandem-layered quantum dot solar cells: tuning the photovoltaic response with luminescent ternary cadmium chalcogenides. J Am Chem Soc, 2013, 135: 877–885CrossRefGoogle Scholar
  21. 21.
    Guijarro N, Lana-Villarreal T, Lutz T, et al. Sensitization of TiO2 with PbSe quantum dots by SILAR: how mercaptophenol improves charge separation. J Phys Chem Lett, 2012, 3: 3367–3372CrossRefGoogle Scholar
  22. 22.
    Luther JM, Gao J, Lloyd MT, et al. Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell. Adv Mater, 2010, 22: 3704–3707CrossRefGoogle Scholar
  23. 23.
    Parsi Benehkohal N, González-Pedro V, Boix PP, et al. Colloidal PbS and PbSeS quantum dot sensitized solar cells prepared by electrophoretic deposition. J Phys Chem C, 2012, 116: 16391–16397CrossRefGoogle Scholar
  24. 24.
    Tian J, Shen T, Liu X, et al. Enhanced performance of PbSquantum-dot-sensitized Solar cells via optimizing precursor solution and electrolytes. Sci Rep, 2016, 6: 23094CrossRefGoogle Scholar
  25. 25.
    Yu X, Zhu J, Zhang Y, et al. SnSe2 quantum dot sensitized solar cells prepared employing molecular metal chalcogenide as precursors. Chem Commun, 2012, 48: 3324–3326CrossRefGoogle Scholar
  26. 26.
    Guimard D, Morihara R, Bordel D, et al. Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage. Appl Phys Lett, 2010, 96: 203507CrossRefGoogle Scholar
  27. 27.
    Yu P, Zhu K, Norman AG, et al. Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. J Phys Chem B, 2006, 110: 25451–25454CrossRefGoogle Scholar
  28. 28.
    Heo JH, Im SH, Kim H, et al. Sb2S3-sensitized photoelectrochemical cells: open circuit voltage enhancement through the introduction of poly-3-hexylthiophene interlayer. J Phys Chem C, 2012, 116: 20717–20721CrossRefGoogle Scholar
  29. 29.
    Lv X, Yang S, Li M, et al. Investigation of a novel intermediate band photovoltaic material with wide spectrum solar absorption based on Ti-substituted CuGaS2. Sol Energ, 2014, 103: 480–487CrossRefGoogle Scholar
  30. 30.
    Nozik AJ, Beard MC, Luther JM, et al. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem Rev, 2010, 110: 6873–6890CrossRefGoogle Scholar
  31. 31.
    Hamanaka Y, Ogawa T, Tsuzuki M, et al. Photoluminescence properties and its origin of AgInS2 quantum dots with chalcopyrite structure. J Phys Chem C, 2011, 115: 1786–1792CrossRefGoogle Scholar
  32. 32.
    Omata T, Nose K, Otsuka-Yao-Matsuo S. Size dependent optical band gap of ternary I-III-VI2 semiconductor nanocrystals. J Appl Phys, 2009, 105: 073106–073106CrossRefGoogle Scholar
  33. 33.
    Allen PM, Bawendi MG. Ternary I−III−VI quantum dots luminescent in the red to near-infrared. J Am Chem Soc, 2008, 130: 9240–9241CrossRefGoogle Scholar
  34. 34.
    Feng J, Han J, Zhao X. Synthesis of CuInS2 quantum dots on TiO2 porous films by solvothermal method for absorption layer of solar cells. Prog Org Coatings, 2009, 64: 268–273CrossRefGoogle Scholar
  35. 35.
    Li L, Daou TJ, Texier I, et al. Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging. Chem Mater, 2009, 21: 2422–2429CrossRefGoogle Scholar
  36. 36.
    Norako ME, Brutchey RL. Synthesis of metastable wurtzite cuInSe2 nanocrystals. Chem Mater, 2010, 22: 1613–1615CrossRefGoogle Scholar
  37. 37.
    Singh A, Coughlan C, Laffir F, et al. Assembly of CuIn1−xGaxS2 nanorods into highly ordered 2D and 3D superstructures. ACS Nano, 2012, 6: 6977–6983CrossRefGoogle Scholar
  38. 38.
    Chang SH, Chiu BC, Gao TL, et al. Selective synthesis of copper gallium sulfide (CuGaS2) nanostructures of different sizes, crystal phases, and morphologies. CrystEngComm, 2014, 16: 3323–3330CrossRefGoogle Scholar
  39. 39.
    Wagner S, Shay JL, Tell B, et al. Green electroluminescence from CdS–CuGaS2 heterodiodes. Appl Phys Lett, 1973, 22: 351–353CrossRefGoogle Scholar
  40. 40.
    Tung HT, Hwu Y, Chen IG, et al. Fabrication of single crystal CuGaS2 nanorods by X-ray irradiation. Chem Commun, 2011, 47: 9152–9154CrossRefGoogle Scholar
  41. 41.
    Vahidshad Y, Mirkazemi SM, Tahir MN, et al. Facile one-pot synthesis of polytypic (wurtzite–chalcopyrite) CuGaS2. Appl Phys A, 2016, 122: 187CrossRefGoogle Scholar
  42. 42.
    Kandiel TA, Anjum DH, Sautet P, et al. Electronic structure and photocatalytic activity of wurtzite Cu–Ga–S nanocrystals and their Zn substitution. J Mater Chem A, 2015, 3: 8896–8904CrossRefGoogle Scholar
  43. 43.
    Zhao M, Huang F, Lin H, et al. CuGaS2–ZnS p–n nanoheterostructures: a promising visible light photo-catalyst for water-splitting hydrogen production. Nanoscale, 2016, 8: 16670–16676CrossRefGoogle Scholar
  44. 44.
    Zhou Q, Kang SZ, Li X, et al. One-pot hydrothermal preparation of wurtzite CuGaS2 and its application as a photoluminescent probe for trace detection of l-noradrenaline. Colloids Surfs A-PhysicoChem Eng Aspects, 2015, 465: 124–129CrossRefGoogle Scholar
  45. 45.
    Zhou Q, Kang SZ, Li X, et al. A facile self-assembled film assisted preparation of CuGaS2 ultrathin films and their high sensitivity to L-noradrenaline. Appl Surf Sci, 2016, 363: 659–663CrossRefGoogle Scholar
  46. 46.
    Liu Z, Hao Q, Tang R, et al. Facile one-pot synthesis of polytypic CuGaS2 nanoplates. Nanoscale Res Lett, 2013, 8: 524CrossRefGoogle Scholar
  47. 47.
    Tell B, Shay JL, Kasper HM. Room-temperature electrical properties of ten I-III-VI2 semiconductors. J Appl Phys, 1972, 43: 2469–2470CrossRefGoogle Scholar
  48. 48.
    Han M, Zhang X, Zeng Z. The investigation of transition metal doped CuGaS2 for promising intermediate band materials. RSC Adv, 2014, 4: 62380–62386CrossRefGoogle Scholar
  49. 49.
    Shay JL, Wernick JH. Ternary Chalcopyrite Semiconductors, Growth, Electronic properties, and applications. Oxford: Pergramon Press, 1975Google Scholar
  50. 50.
    Xiao N, Zhu L, Wang K, et al. Synthesis and high-pressure transformation of metastable wurtzite-structured CuGaS2 nanocrystals. Nanoscale, 2012, 4: 7443–7447CrossRefGoogle Scholar
  51. 51.
    Regulacio MD, Ye C, Lim SH, et al. Facile noninjection synthesis and photocatalytic properties of wurtzite-phase CuGaS2 nanocrystals with elongated morphologies. CrystEngComm, 2013, 15: 5214–5217CrossRefGoogle Scholar
  52. 52.
    Li TL, Lee YL, Teng H. CuInS2 quantum dots coated with CdS as high-performance sensitizers for TiO2 electrodes in photoelectrochemical cells. J Mater Chem, 2011, 21: 5089–5098CrossRefGoogle Scholar
  53. 53.
    Li TL, Lee YL, Teng H. High-performance quantum dot-sensitized solar cells based on sensitization with CuInS2 quantum dots/CdS heterostructure. Energ Environ Sci, 2012, 5: 5315–5324CrossRefGoogle Scholar
  54. 54.
    Zhao J, Zhang J, Wang W, et al. Facile synthesis of CuInGaS2 quantum dot nanoparticles for bilayer-sensitized solar cells. Dalton Trans, 2014, 43: 16588–16592CrossRefGoogle Scholar
  55. 55.
    Wang X, Wang P, Dong Z, et al. Highly sensitive fluorescence probe based on functional SBA-15 for selective detection of Hg2+. Nanoscale Res Lett, 2010, 5: 1468–1473CrossRefGoogle Scholar
  56. 56.
    Alonso MI, Wakita K, Pascual J, et al. Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2. Phys Rev B, 2001, 63: 075203CrossRefGoogle Scholar
  57. 57.
    Yang L, McCue C, Zhang Q, et al. Highly efficient quantum dotsensitized TiO2 solar cells based on multilayered semiconductors (ZnSe/CdS/CdSe). Nanoscale, 2015, 7: 3173–3180CrossRefGoogle Scholar
  58. 58.
    Chen S, Gong XG, Walsh A, et al. Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: firstprinciples insights. Appl Phys Lett, 2009, 94: 041903CrossRefGoogle Scholar
  59. 59.
    Jaffe JE, Zunger A. Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors. Phys Rev B, 1984, 29: 1882–1906CrossRefGoogle Scholar
  60. 60.
    Nie X, Wei SH, Zhang SB. Bipolar doping and band-gap anomalies in delafossite transparent conductive oxides. Phys Rev Lett, 2002, 88: 066405CrossRefGoogle Scholar
  61. 61.
    Tell B, Shay JL, Kasper HM. Electrical properties, optical properties, and band structure of CuGaS2 and CuInS2. Phys Rev B, 1971, 4: 2463–2471CrossRefGoogle Scholar
  62. 62.
    Ju T, Graham RL, Zhai G, et al. High efficiency mesoporous titanium oxide PbS quantum dot solar cells at low temperature. Appl Phys Lett, 2010, 97: 043106CrossRefGoogle Scholar
  63. 63.
    Chen L, Huang R, Ma YJ, et al. Controllable synthesis of hollow and porous Ag/BiVO4 composites with enhanced visible-light photocatalytic performance. RSC Adv, 2013, 3: 24354–24361CrossRefGoogle Scholar
  64. 64.
    Zhao J, Wang P, Wei L, et al. Enhanced photocurrent by the cosensitization of ZnO with dye and CuInSe nanocrystals. Dalton Trans, 2015, 44: 12516–12521CrossRefGoogle Scholar
  65. 65.
    Gonzalez-Pedro V, Xu X, Mora-Sero I, et al. Modeling high-efficiency quantum dot sensitized solar cells. ACS Nano, 2010, 4: 5783–5790CrossRefGoogle Scholar
  66. 66.
    Fabregat-Santiago F, Garcia-Belmonte G, Mora-Seró I, et al. Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. Phys Chem Chem Phys, 2011, 13: 9083–9118CrossRefGoogle Scholar
  67. 67.
    Mahmood K, Kang HW, Park SB, et al. Hydrothermally grown upright-standing nanoporous nanosheets of iodine-doped ZnO (ZnO:I) nanocrystallites for a high-efficiency dye-sensitized solar cell. ACS Appl Mater Interfaces, 2013, 5: 3075–3084CrossRefGoogle Scholar
  68. 68.
    Xie Y, Joshi P, Darling SB, et al. Electrolyte effects on electron transport and recombination at ZnO nanorods for dye-sensitized solar cells. J Phys Chem C, 2010, 114: 17880–17888CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Jinjin Zhao (赵晋津)
    • 1
    • 2
    • 3
    Email author
  • Zhenghao Liu (刘正浩)
    • 1
    • 3
  • Hao Tang (唐浩)
    • 4
  • Chunmei Jia (贾春媚)
    • 1
  • Xingyu Zhao (赵星宇)
    • 1
  • Feng Xue (薛峰)
    • 5
  • Liyu Wei (魏丽玉)
    • 1
    • 3
  • Guoli Kong (孔国丽)
    • 1
  • Chen Wang (王晨)
    • 1
  • Liu Jinxi (刘金喜)
    • 1
    Email author
  1. 1.School of Materials Science and Engineering, Department of Engineering MechanicsShijiazhuang Tiedao UniversityShijiazhuangChina
  2. 2.Engineering Research Center of Nano-Geo Materials of Ministry of EducationChina University of GeosciencesWuhanChina
  3. 3.Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
  4. 4.Department of Materials Science and EngineeringUniversity of WashingtonSeattleUSA
  5. 5.Hesteel Group Technology Research InstituteShijiazhuangChina

Personalised recommendations