Science China Materials

, Volume 60, Issue 5, pp 407–414 | Cite as

High-performance ultraviolet-visible tunable perovskite photodetector based on solar cell structure

  • Mengni Xue (薛梦妮)
  • Hai Zhou (周海)
  • Yang Xu (许杨)
  • Jun Mei (梅俊)
  • Lu Yang (杨麓)
  • Cong Ye (叶葱)
  • Jun Zhang (张军)
  • Hao Wang (王浩)


An ultraviolet (UV)-visible tunable photodetector based on ZnO nanorod arrays (NAs)/perovskite heterojunction solar cell structures is presented, in which the ZnO NAs are prepared using the hydrothermal method and annealed in different atmospheres. Based on solar cell structure perovskite photodetectors, it exhibited highly repeatable and stable photoelectric response characteristics. In addition, the devices with ZnO NAs annealed in a vacuum showed a high responsivity of about 1014 cm Hz1/2 W−1 in the visible region, whereas the devices with ZnO NAs annealed in air exhibited good detectivity in the UV region, especially at around 350 nm. Furthermore, when the annealing atmosphere of the ZnO nanorods was changed from vacuum to air, the dominant detection region of the photodetectors was altered from the visible to the ultraviolet region. These results enable potential applications of the ZnO NAs/perovskite photodetectors in ultraviolet and visible regions.


annealing UV-vis tunable ZnO nanorod arrays perovskite 



本文报道了一种基于ZnO纳米棒阵列/钙钛矿电池结构的紫外-可见可调的光电探测器, 其中ZnO纳米棒阵列采用水热法制备并在不同气氛下退火. 基于电池结构的钙钛矿光电探测器具有较好的光电响应重复性和稳定性. ZnO纳米棒阵列真空退火的器件在可见光区域达到了1014 Jones的响应度, 而ZnO纳米棒阵列在空气中退火的器件在紫外光区域, 尤其在365 nm处有较好的探测性能. 进一步研究发现, 通过不同氛围退火, 实现了紫外-可见可调的光电探测性能. 以上结果表明ZnO纳米棒阵列/钙钛矿光电探测器在紫外和可见光区域存在潜在应用.



This work is supported by the National Nature Science Foundation of China (51372075).


  1. 1.
    Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131: 6050–6051CrossRefGoogle Scholar
  2. 2.
    Zhou H, Chen Q, Li G, et al. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345: 542–546CrossRefGoogle Scholar
  3. 3.
    Yang WS, Noh JH, Jeon NJ, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348: 1234–1237CrossRefGoogle Scholar
  4. 4.
    Anaraki EH, Kermanpur A, Steier L, et al. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energ Environ Sci, 2016, 9: 3128–3134CrossRefGoogle Scholar
  5. 5.
    Fang Y, Huang J. Resolving weak light of sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction. Adv Mater, 2015, 27: 2804–2810CrossRefGoogle Scholar
  6. 6.
    Stranks SD, Eperon GE, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342: 341–344CrossRefGoogle Scholar
  7. 7.
    Xing G, Mathews N, Sun S, et al. Long-range balanced electronand hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342: 344–347CrossRefGoogle Scholar
  8. 8.
    Lee Y, Kwon J, Hwang E, et al. High-performance perovskite- graphene hybrid photodetector. Adv Mater, 2015, 27: 41–46CrossRefGoogle Scholar
  9. 9.
    Liu C, Wang K, Yi C, et al. Ultrasensitive solution-processed perovskite hybrid photodetectors. J Mater Chem C, 2015, 3: 6600–6606CrossRefGoogle Scholar
  10. 10.
    Saidaminov MI, Haque MA, Savoie M, et al. Perovskite photodetectors operating in both narrowband and broadband regimes. Adv Mater, 2016, 28: 8144–8149CrossRefGoogle Scholar
  11. 11.
    Murali B, Saidaminov MI, Abdelhady AL, et al. Robust and air-stable sandwiched organo-lead halide perovskites for photodetector applications. J Mater Chem C, 2016, 4: 2545–2552CrossRefGoogle Scholar
  12. 12.
    Guarnera S, Abate A, Zhang W, et al. Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer. J Phys Chem Lett, 2015, 6: 432–437CrossRefGoogle Scholar
  13. 13.
    Son DY, Im JH, Kim HS, et al. 11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system. J Phys Chem C, 2014, 118: 16567–16573CrossRefGoogle Scholar
  14. 14.
    Kumar MH, Yantara N, Dharani S, et al. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem Commun, 2013, 49: 11089–11091CrossRefGoogle Scholar
  15. 15.
    Zhou H, Zhu Y, Wang H, et al. Electroluminescence transition from visible- to ultraviolet-dominant mode in n-Mn0.04Zn0.96O/i-ZnGa2O4/n-GaN structurewith highly ultraviolet detection performance. IEEE Electron Device Lett, 2013, 34: 423–425CrossRefGoogle Scholar
  16. 16.
    Xu Y, Liu T, Li Z, et al. Preparation and photovoltaic properties of perovskite solar cell based on ZnO nanorod arrays. Appl Surface Sci, 2016, 388: 89–96CrossRefGoogle Scholar
  17. 17.
    Zhou H, Gui P, Yu Q, et al. Self-powered, visible-blind ultraviolet photodetector based on n-ZnO nanorods/i-MgO/p-GaN structure light-emitting diodes. J Mater Chem C, 2015, 3: 990–994CrossRefGoogle Scholar
  18. 18.
    Lin Q, Armin A, Lyons DM, et al. Lownoise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging. Adv Mater, 2015, 27: 2060–2064CrossRefGoogle Scholar
  19. 19.
    Zhou H, Song Z, Tao P, et al. Self-powered, ultraviolet-visible perovskite photodetector based on TiO2 nanorods. RSC Adv, 2016, 6: 6205–6208CrossRefGoogle Scholar
  20. 20.
    Yu J, Chen X, Wang Y, et al. A high-performance self-powered broadband photodetector based on aCH3NH3PbI3 perovskite/ZnO nanorod array heterostructure. J Mater Chem C, 2016, 4: 7302–7308CrossRefGoogle Scholar
  21. 21.
    Dou L, Yang YM, You J, et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat Commun, 2014, 5: 5404CrossRefGoogle Scholar
  22. 22.
    Lee MM, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338: 643–647CrossRefGoogle Scholar
  23. 23.
    Ke W, Fang G, Wan J, et al. Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells. Nat Commun, 2015, 6: 6700CrossRefGoogle Scholar
  24. 24.
    Hu X, Zhang X, Liang L, et al. High-performance flexible broadband photodetector based on organolead halide perovskite. Adv Funct Mater, 2014, 24: 7373–7380CrossRefGoogle Scholar
  25. 25.
    Huo C, Cai B, Yuan Z, et al. Two-dimensional metal halide perovskites: theory, synthesis, and optoelectronics. Small Methods, 2017, 1: 1600018CrossRefGoogle Scholar
  26. 26.
    Li X, Cao F, Yu D, et al. All inorganic halide perovskites nanosystem: synthesis, structural features, optical properties and optoelectronic applications. Small, 2017, 13: 1603996CrossRefGoogle Scholar
  27. 27.
    Li X, Yu D, Chen J, et al. Constructing fast carrier tracks into flexible perovskite photodetectors to greatly improve responsivity. ACS Nano, 2017, 11: 2015–2023CrossRefGoogle Scholar
  28. 28.
    Zhou H, Fang GJ, Zhu Y, et al. Flexible resistive switchingmemory based onMn0.20Zn0.80O/HfO2 bilayer structure. J PhysD-Appl Phys, 2011, 44: 445101CrossRefGoogle Scholar
  29. 29.
    Wang J, Wang Z, Huang B, et al. Oxygen vacancy induced bandgap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl Mater Interfaces, 2012, 4: 4024–4030CrossRefGoogle Scholar
  30. 30.
    Ji LW, Peng SM, Su YK, et al. Ultraviolet photodetectors based on selectively grown ZnO nanorod arrays. Appl Phys Lett, 2009, 94: 203106CrossRefGoogle Scholar
  31. 31.
    Zhou H, Fang G, Liu N, et al. Ultraviolet photodetectors based on ZnO nanorods-seed layer effect and metal oxide modifying layer effect. Nanoscale Res Lett, 2011, 6: 147CrossRefGoogle Scholar
  32. 32.
    Tam KH, Cheung CK, Leung YH, et al. Defects in ZnO nanorods prepared by a hydrothermal method. J Phys Chem B, 2006, 110: 20865–20871CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Mengni Xue (薛梦妮)
    • 1
  • Hai Zhou (周海)
    • 1
  • Yang Xu (许杨)
    • 1
  • Jun Mei (梅俊)
    • 1
  • Lu Yang (杨麓)
    • 1
  • Cong Ye (叶葱)
    • 1
  • Jun Zhang (张军)
    • 1
  • Hao Wang (王浩)
    • 1
  1. 1.Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Laboratory of Ferroelectric and Dielectric Materials and Devices, Faculty of Physics and Electronic ScienceHubei UniversityWuhanChina

Personalised recommendations