Science China Materials

, Volume 60, Issue 5, pp 377–391 | Cite as

Degradable, absorbable or resorbable—what is the best grammatical modifier for an implant that is eventually absorbed by the body?

  • Yang Liu (刘洋)
  • Yufeng Zheng (郑玉峰)Email author
  • Byron Hayes (拜伦海耶斯)


The adoption of grammatical modifier for implants or other kinds of biomaterials eventually absorbed by the body has been a long-standing confusing issue, and there are diverse terms in the large fields of research, which not only causes the difficulties when searching on the Internet, but also blurs the meaning and boundaries for researchers. Prior unification attempts at laws/standards set the basis for such research fields towards researching, labeling, marketing and instructions for use. Considering this, the typical grammatical modifiers “biodegradable”, “resorbable”, “absorbable”, along with their noun forms used in the decades of scientific research have been reviewed and explained, interdisciplinary in chemistry, ecology, materials science, biology, microbiology, medicine, and based on usage customs, laws, standards and markets. The term “biodegradable” has been not only used in biomaterials but also in ecology waste management, biomedicine and even natural environment. Meanwhile, the term “resorbable” has long been used in biological reaction (osteoclast driven bone resorption), but is inappropriate for implants that do not carry the potential to grow back into their original form. The term “absorbable” focuses more on the host metabolism to the foreign biodegradation products of the implanted material/device compared with the term “degradable/biodegradable”. Meanwhile the coherence and normalization of the term“absorbable” carried by its own in laws and standards contributes as well. In general, the authors consider the term “absorbable” to be the best grammatical modifier with respect to other adjectives which share the same inherence. A further internationally unified usage is proposed by us.


biodegradation bioabsorption bioresorption biodegradable absorbable biomaterials 



关于最终被人体吸收的植入材料, 领域内文献采用的英文修饰词长期以来混乱且不同, 不仅造成文献检索困难, 同时模糊了研究人 员的研究边界. 此领域在法律法规/标准中统一用词的确定, 为领域内的科学研究、产品销售及产品使用说明奠定了基础. 我们基于化学、 生态学、材料学、生物学、微生物学和药学, 立足于使用习惯、法律、标准和市场, 对领域内使用已久的典型修饰词“生物可降解”、“再 吸收”和“可吸收”进行了讨论和解释. 总的来说, 尽管目前绝大多数修饰语实际想表达的意思相同, 作者认为“可吸收”这一英文修饰语是最 恰当的修饰词. 同时, 我们提议进一步规范和统一该领域修饰词的使用.



This work was supported by the National Key Research and Development Programof China (2016YFC1102402), National Natural Science Foundation of China (NSFC, 51431002), and the NSFC and the Research Grants Council (RGC) of Hong Kong Joint Research Scheme (51361165101 and 5161101031).


  1. 1.
    Mackenzie D. The history of sutures. Med Hist, 1973, 17: 158–168CrossRefGoogle Scholar
  2. 2.
    Hench LL. Bioceramics. J Am Ceramic Soc, 2005, 81: 1705–1728CrossRefGoogle Scholar
  3. 3.
    Hench LL. Bioceramics: fromconcept to clinic. J AmCeramic Soc, 1991, 74: 1487–1510CrossRefGoogle Scholar
  4. 4.
    Windhagen H, Radtke K, Weizbauer A, et al. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study. BioMed Eng OnLine, 2013, 12: 62CrossRefGoogle Scholar
  5. 5.
    Schildwächter M. Biotronik announces CE mark for magmaris, the first clinically-proven bioresorbable magnesium scaffold. Scholar
  6. 6.
    Shalaby SW, Burg KJL. Bioabsorbable polymers update: degradation mechanisms, safety, and application. J App Biomater, 1995, 6: 219–221CrossRefGoogle Scholar
  7. 7.
    Vert M, Li SM, Spenlehauer G, et al. Bioresorbability and biocompatibility of aliphatic polyesters. J Mater Sci-Mater Med, 1992, 3: 432–446CrossRefGoogle Scholar
  8. 8.
    Vert M. Degradable and bioresorbable polymers in surgery and in pharmacology: beliefs and facts. J Mater Sci-Mater Med, 2009, 20: 437–446CrossRefGoogle Scholar
  9. 9.
    Benicewicz BC, Hopper PK. Part I. J Bioactive Compatible Polym, 1990, 5: 453–472CrossRefGoogle Scholar
  10. 10.
    Barrows HT. Synthetic bioabsorbable polymers. In: Szycher M (Ed.). High Performance Biomaterials: A Complete Guide toMedical and Pharmceutical Applications. Boca Raton: CRC PRESS, 1991, 243–257Google Scholar
  11. 11.
    Weiler A, Hoffmann RFG, Stähelin AC, et al. Biodegradable implants in sports medicine: the biological base. Arthroscopy-J Arthroscopic Related Surgery, 2000, 16: 305–321CrossRefGoogle Scholar
  12. 12.
    Ikada Y, Tsuji H. Biodegradable polyesters for medical and ecological applications. Macromol Rapid Commun, 2000, 21: 117–132CrossRefGoogle Scholar
  13. 13.
    Ashammakhi N, Peltoniemi H, Waris E, et al. Developments in craniomaxillofacial surgery: use of self-reinforced bioabsorbable osteofixation devices. Plast Reconstr Surg, 2001, 108: 167–180CrossRefGoogle Scholar
  14. 14.
    Vert M, Doi Y, Hellwich KH, et al. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl Chem, 2012, 84: 377–410CrossRefGoogle Scholar
  15. 15.
    The United States Pharmacopeial Convention. The Second Supplement to the Pharmacopeia of theUnited States of America: 11th decennial revision (USP XI-1939 Supplement). 1939Google Scholar
  16. 16.
    Truhlsen SM. The recession operation: histopathologic response, and suture reaction and absorption. Trans Am Ophthalmol Soc, 1965, 63: 626–677Google Scholar
  17. 17.
    USP in U.S. Law. usp-us-lawGoogle Scholar
  18. 18.
    USP develops and publishes standards for drug substances, drug products, excipients, and dietary supplements in the United States Pharmacopeia-National Formulary (USP-NF)Google Scholar
  19. 19.
    United States Public Law 94-295. 1976Google Scholar
  20. 20.
    United States Pharmacopeia. Scholar
  21. 21.
    British Pharmacopeia. Scholar
  22. 22.
    European Pharmacopoeia. Scholar
  23. 23.
    Williams DF. TheWilliams Dictionary of Biomaterials. Liverpool: Liverpool University Press, 1999Google Scholar
  24. 24. Scholar
  25. 25.
    Jones RG, Kahovec J, Stepto R, et al. Compendium of Polymer Terminology and Nomenclature: IUPAC Recommendations 2008. Cambridge: RSC Publishing, 2009Google Scholar
  26. 26.
    Higashi S, Yamamuro T, Nakamura T, et al. Polymer-hydroxyapatite composites for biodegradable bone fillers. Biomaterials, 1986, 7: 183–187CrossRefGoogle Scholar
  27. 27.
    de Groot K. Bioceramics of Calcium Phosphate. Boca Raton: CRC Press, 1983Google Scholar
  28. 28.
    Hollinger JO, Battistone GC. Biodegradable bone repair materials synthetic polymers and ceramics. Clin Orthop Relat Res, 1986, 207: 290–306Google Scholar
  29. 29.
    ASTMD653-14, Standard Terminology Relating to Soil, Rock, and Contained Fluids. ASTM International, West Conshohocken, PA, 2014. Scholar
  30. 30.
    Witte F, Hort N, Vogt C, et al. Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci, 2008, 12: 63–72CrossRefGoogle Scholar
  31. 31.
    Lynn DM, Langer R. Degradable poly(ß-amino esters): synthesis, characterization, and self-assemblywith plasmidDNA. JAmChem Soc, 2000, 122: 10761–10768CrossRefGoogle Scholar
  32. 32.
    Cima LG, Vacanti JP, Vacanti C, et al. Tissue engineering by cell transplantation using degradable polymer substrates. J Biomech Eng, 1991, 113: 143–151CrossRefGoogle Scholar
  33. 33.
    Zhang S, Zhang X, Zhao C, et al. Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomater, 2010, 6: 626–640CrossRefGoogle Scholar
  34. 34.
    Anseth KS, Metters AT, Bryant SJ, et al. In situ forming degradable networks and their application in tissue engineering and drug delivery. J Control Release, 2002, 78: 199–209CrossRefGoogle Scholar
  35. 35.
    Forrest ML, Koerber JT, Pack DW. A degradable polyethylenimine derivative with low toxicity for highly efficient gene delivery. Bioconjugate Chem, 2003, 14: 934–940CrossRefGoogle Scholar
  36. 36.
    ASTM E2747-11, Standard Specification for Evaluation and Selection of Onsite Offices for Environmentally Sustainable Meetings, Events, Trade Shows, and Conferences. ASTM International, West Conshohocken, PA, 2011. E2747.htmGoogle Scholar
  37. 37.
    ASTM E2745-11, Standard Specification for Evaluation and Selection of Audio Visual (AV) and Production for Environmentally Sustainable Meetings, Events, Trade Shows, and Conferences. ASTM International, West Conshohocken, PA, 2011. Scholar
  38. 38.
    ASTM E2746-11, Standard Specification for Evaluation and Selection of Communication and Marketing Materials for Environmentally Sustainable Meetings, Events, Trade Shows, and Conferences. ASTMInternational,West Conshohocken, PA, 2011. Scholar
  39. 39.
    ASTM E2741-11, Standard Specification for Evaluation and Selection of Destinations for Environmentally Sustainable Meetings, Events, Trade Shows, and Conferences. ASTM International, West Conshohocken, PA, 2011. E2741.htmGoogle Scholar
  40. 40.
    ASTM E2773-11, Standard Specification for Evaluation and Selection of Food and Beverage for Environmentally Sustainable Meetings, Events, Trade Shows, and Conferences. ASTM International, West Conshohocken, PA, 2011. E2773.htmGoogle Scholar
  41. 41.
    ASTM E2742-11, Standard Specification for Evaluation and Selection of Exhibits for Environmentally SustainableMeetings, Events, Trade Shows, and Conferences. ASTM International, West Conshohocken, PA, 2011. Scholar
  42. 42.
    ASTM E2774-11, Standard Specification for Evaluation and Selection of Venues for Environmentally Sustainable Meetings, Events, Trade Shows, and Conferences. ASTM International, West Conshohocken, PA, 2011. Scholar
  43. 43.
    ASTM F2902-12, Standard Guide for Assessment of Absorbable Polymeric Implants. ASTM International, West Conshohocken, PA, 2012. Scholar
  44. 44. Scholar
  45. 45.
    Venes D. Taber’s Cyclopedic Medical Dictionary, 22th edition. Philadelphia: F. A. Davis Company, 2013Google Scholar
  46. 46.
    Zheng YF, Gu XN, Witte F. Biodegradable metals. Mater Sci Eng- R-Rep, 2014, 77: 1–34CrossRefGoogle Scholar
  47. 47.
    Hanawa T. Metal ion release from metal implants. Mater Sci Eng-C, 2004, 24: 745–752CrossRefGoogle Scholar
  48. 48.
    Zreiqat H, Howlett CR, Zannettino A, et al. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res, 2002, 62: 175–184CrossRefGoogle Scholar
  49. 49.
    Little PJ, Bhattacharya R, Moreyra AE, et al. Zinc and cardiovascular disease. Nutrition, 2010, 26: 1050–1057CrossRefGoogle Scholar
  50. 50.
    Seager H. Drug-delivery products and the Zydis fast-dissolving dosage form. J Pharm Pharmacol, 1998, 50: 375–382CrossRefGoogle Scholar
  51. 51.
    Shikinami Y. Shape-memory, biodegradable and absorbable material. U.S. Patent No. 6,281,262, 2001-8-28Google Scholar
  52. 52.
    Huitema TW, Knight GW, Ransick MH, Schulze DR. Surgical implant with preferential corrosion zone. U.S. Patent No. 7,905,902, 2011-3-15Google Scholar
  53. 53.
    Luzier WD. Materials derived from biomass/biodegradable materials. Proc Natl Acad Sci USA, 1992, 89: 839–842CrossRefGoogle Scholar
  54. 54.
    Gross RA, Kalra B. Biodegradable polymers for the environment. Science, 2002, 297: 803–807CrossRefGoogle Scholar
  55. 55.
    Trumbo P, Schlicker S, Yates AA, et al. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc, 2002, 102: 1621–1630CrossRefGoogle Scholar
  56. 56.
    Chambin O, Champion D, Debray C, et al. Effects of different cellulose derivatives on drug release mechanism studied at a preformulation stage. J Control Release, 2004, 95: 101–108CrossRefGoogle Scholar
  57. 57.
    Fundueanu G, Constantin M, Esposito E, et al. Cellulose acetate butyrate microcapsules containing dextran ion-exchange resins as self-propelled drug release system. Biomaterials, 2005, 26: 4337–4347CrossRefGoogle Scholar
  58. 58.
    Märtson M, Viljanto J, Hurme T, et al. Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat. Biomaterials, 1999, 20: 1989–1995CrossRefGoogle Scholar
  59. 59.
    Patel N, Padera R, Sanders GH, et al. Spatially controlled cell engineering on biodegradable polymer surfaces. The FASEB journal, 1998, 12: 1447–1454Google Scholar
  60. 60.
    Goldstein A. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials, 2001, 22: 1279–1288CrossRefGoogle Scholar
  61. 61.
    Wu L, Ding J. In vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials, 2004, 25: 5821–5830CrossRefGoogle Scholar
  62. 62.
    Wu L, Ding J. Effects of porosity and pore size on in vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering. J Biomed Mater Res, 2005, 75A: 767–777CrossRefGoogle Scholar
  63. 63.
    Pan Z, Ding J. Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine. Interface Focus, 2012, 2: 366–377CrossRefGoogle Scholar
  64. 64.
    Yu L, Zhang Z, Zhang H, et al. Biodegradability and biocompatibility of thermoreversible hydrogels formed from mixing a sol and a precipitate of block copolymers in water. Biomacromolecules, 2010, 11: 2169–2178CrossRefGoogle Scholar
  65. 65.
    Wen X, Tresco PA. Fabrication and characterization of permeable degradable poly(DL-lactide-co-glycolide) (PLGA) hollow fiber phase inversion membranes for use as nerve tract guidance channels. Biomaterials, 2006, 27: 3800–3809CrossRefGoogle Scholar
  66. 66.
    Chu CFL, Lu A, Liszkowski M, et al. Enhanced growth of animal and human endothelial cells on biodegradable polymers. BBA-Gen Subjects, 1999, 1472: 479–485CrossRefGoogle Scholar
  67. 67.
    Jo S, Engel PS, Mikos AG. Synthesis of poly(ethylene glycol)-tethered poly(propylene fumarate) and its modification with GRGD peptide. Polymer, 2000, 41: 7595–7604CrossRefGoogle Scholar
  68. 68.
    Park JH, Allen MG, Prausnitz MR. Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J Control Release, 2005, 104: 51–66CrossRefGoogle Scholar
  69. 69.
    Freed LE, Vunjak-Novakovic G, Biron RJ, et al. Biodegradable polymer scaffolds for tissue engineering. Nat Biotechnol, 1994, 12: 689–693CrossRefGoogle Scholar
  70. 70.
    Windecker S, Serruys PW, Wandel S, et al. Biolimus-eluting stent with biodegradable polymer versus sirolimus-eluting stent with durable polymer for coronary revascularisation (LEADERS): a randomised non-inferiority trial. Lancet, 2008, 372: 1163–1173CrossRefGoogle Scholar
  71. 71.
    Stefanini GG, Kalesan B, Serruys PW, et al. Long-term clinical outcomes of biodegradable polymer biolimus-eluting stents versus durable polymer sirolimus-eluting stents in patients with coronary artery disease (LEADERS): 4 year follow-up of a randomised non-inferiority trial. Lancet, 2011, 378: 1940–1948CrossRefGoogle Scholar
  72. 72.
    Raungaard B, Jensen LO, Tilsted HH, et al. Zotarolimus-eluting durable-polymer-coated stent versus a biolimus-eluting biodegradable-polymer-coated stent in unselected patients undergoing percutaneous coronary intervention (SORT OUT VI): a randomised non-inferiority trial. Lancet, 2015, 385: 1527–1535CrossRefGoogle Scholar
  73. 73.
    Freed LE, Grande DA, Lingbin Z, et al. Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds. J Biomed Mater Res, 1994, 28: 891–899CrossRefGoogle Scholar
  74. 74.
    Poirier Y, Nawrath C, Somerville C. Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Nat Biotechnol, 1995, 13: 142–150CrossRefGoogle Scholar
  75. 75.
    Dias A, Tsuru K, Hayakawa S, et al. Crystallisation studies of biodegradable CaO-P2O5 glass with MgO and TiO2 for bone regeneration applications. Glass Technol, 2004, 45: 78–79Google Scholar
  76. 76.
    Klein CPAT, de Groot K, Drißsen AA, et al. Interaction of biodegradable ß-whitlockite ceramics with bone tissue: an in vivo study. Biomaterials, 1985, 6: 189–192CrossRefGoogle Scholar
  77. 77.
    Ikenaga M, Hardouin P, Lemaître J, et al. Biomechanical characterization of a biodegradable calcium phosphate hydraulic cement: a comparison with porous biphasic calcium phosphate ceramics. J Biomed Mater Res, 1998, 40: 139–144CrossRefGoogle Scholar
  78. 78.
    Dias AG, Lopes MA, Santos JD, et al. In vivo performance of biodegradable calcium phosphate glass ceramics using the rabbit model: histological and SEM observation. J Biomater Appl, 2006, 20: 253–266CrossRefGoogle Scholar
  79. 79.
    Lee JH, Lee CK, Chang BS, et al. In vivo study of novel biodegradable and osteoconductive CaO-SiO2-B2O3 glass-ceramics. J Biomed Mater Res, 2006, 77A: 362–369CrossRefGoogle Scholar
  80. 80.
    Song G, Song S. A possible biodegradablemagnesium implantmaterial. Adv Eng Mater, 2007, 9: 298–302CrossRefGoogle Scholar
  81. 81.
    Kim WC, Kim JG, Lee JY, et al. Influence of Ca on the corrosion properties of magnesium for biomaterials. Mater Lett, 2008, 62: 4146–4148CrossRefGoogle Scholar
  82. 82.
    Li Z, Gu X, Lou S, et al. The development of binary Mg-Ca alloys for use as biodegradablematerials within bone. Biomaterials, 2008, 29: 1329–1344CrossRefGoogle Scholar
  83. 83.
    Wan Y, Xiong G, Luo H, et al. Preparation and characterization of a new biomedical magnesium-calcium alloy. Mater Des, 2008, 29: 2034–2037CrossRefGoogle Scholar
  84. 84.
    Seong JW, Kim WJ. Development of biodegradable Mg-Ca alloy sheets with enhanced strength and corrosion properties through the refinement and uniformdispersion of theMg2Ca phase by highratio differential speed rolling. Acta Biomater, 2015, 11: 531–542CrossRefGoogle Scholar
  85. 85.
    Zhang S, Li J, Song Y, et al. In vitro degradation, hemolysis and MC3T3-E1 cell adhesion of biodegradable Mg-Zn alloy. Mater Sci Eng-C, 2009, 29: 1907–1912CrossRefGoogle Scholar
  86. 86.
    Li J, Song Y, Zhang S, et al. In vitro responses of human bone marrow stromal cells to a fluoridated hydroxyapatite coated biodegradable Mg-Zn alloy. Biomaterials, 2010, 31: 5782–5788CrossRefGoogle Scholar
  87. 87.
    Brar HS, Wong J, Manuel MV. Investigation of the mechanical and degradation properties of Mg-Sr and Mg-Zn-Sr alloys for use as potential biodegradable implant materials. J Mech Behav Biomed Mater, 2012, 7: 87–95CrossRefGoogle Scholar
  88. 88.
    Bornapour M, Muja N, Shum-Tim D, et al. Biocompatibility and biodegradability of Mg-Sr alloys: the formation of Sr-substituted hydroxyapatite. Acta Biomater, 2013, 9: 5319–5330CrossRefGoogle Scholar
  89. 89.
    Gu XN, Xie XH, Li N, et al. In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal. Acta Biomater, 2012, 8: 2360–2374CrossRefGoogle Scholar
  90. 90.
    Hänzi AC, Gerber I, Schinhammer M, et al. On the in vitro and in vivo degradation performance and biological response of new biodegradableMg-Y-Zn alloys. Acta Biomater, 2010, 6: 1824–1833CrossRefGoogle Scholar
  91. 91.
    Chou DT, Hong D, Saha P, et al. In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg-Y-Ca-Zr alloys as implant materials. Acta Biomater, 2013, 9: 8518–8533CrossRefGoogle Scholar
  92. 92.
    Zong Y, Yuan G, Zhang X, et al. Comparison of biodegradable behaviors of AZ31 and Mg-Nd-Zn-Zr alloys in Hank’s physiological solution. Mater Sci Eng-B, 2012, 177: 395–401CrossRefGoogle Scholar
  93. 93.
    Tie D, Feyerabend F, Müller WD, et al. Antibacterial biodegradable Mg-Ag alloys. Eur Cell Mater, 2013, 25: 284–298CrossRefGoogle Scholar
  94. 94.
    Vojtech D, Kubásek J, Serák J, et al. Mechanical and corrosion prop- erties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater, 2011, 7: 3515–3522CrossRefGoogle Scholar
  95. 95.
    Li H, Yang H, Zheng Y, et al. Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr. Mater Des, 2015, 83: 95–102CrossRefGoogle Scholar
  96. 96.
    Liu X, Sun J, Yang Y, et al. Microstructure, mechanical properties, in vitro degradation behavior and hemocompatibility of novel Zn-Mg-Sr alloys as biodegradable metals. Mater Lett, 2016, 162: 242–245CrossRefGoogle Scholar
  97. 97.
    Wu C, Qiu H, Hu X, et al. Short-term safety and efficacy of the biodegradable iron stent in mini-swine coronary arteries. Chin Med J (Engl), 2013, 126: 4752–4757Google Scholar
  98. 98.
    Purnama A, Hermawan H, Champetier S, et al. Gene expression profile of mouse fibroblasts exposed to a biodegradable iron alloy for stents. Acta Biomater, 2013, 9: 8746–8753CrossRefGoogle Scholar
  99. 99.
    Hermawan H, Purnama A, DubeD, et al. Fe-Mn alloys formetallic biodegradable stents: degradation and cell viability studies. Acta Biomater, 2010, 6: 1852–1860CrossRefGoogle Scholar
  100. 100.
    Sheridan MH, Shea LD, Peters MC, et al. Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. J Control Release, 2000, 64: 91–102CrossRefGoogle Scholar
  101. 101.
    Shawe S, Buchanan F, Harkin-Jones E, et al. A study on the rate of degradation of the bioabsorbable polymer polyglycolic acid (PGA). J Mater Sci, 2006, 41: 4832–4838CrossRefGoogle Scholar
  102. 102.
    Palmerini T, Biondi-Zoccai G, Della Riva D, et al. Clinical outcomes with bioabsorbable polymer-versus durable polymer-based drug-eluting and bare-metal stents. J Am Coll Cardiol, 2014, 63: 299–307CrossRefGoogle Scholar
  103. 103.
    Tanimoto S, Serruys PW, Thuesen L, et al. Comparison of in vivo acute stent recoil between the bioabsorbable everolimus-eluting coronary stent and the everolimus-eluting cobalt chromium coronary stent: insights from the ABSORB and SPIRIT trials. Catheter Cardiovasc Interv, 2007, 70: 515–523CrossRefGoogle Scholar
  104. 104.
    Tsuji H, Sasaki H, Sato H, et al. Neuron attachment properties of carbon negative-ion implanted bioabsorbable polymer of poly-lactic acid. Nucl Instr Meth Phys Res Sect B-Beam Interact Mater Atoms, 2002, 191: 815–819CrossRefGoogle Scholar
  105. 105.
    Aikawa M, Miyazawa M, Okamoto K, et al. A novel treatment for bile duct injury with a tissue-engineered bioabsorbable polymer patch. Surgery, 2010, 147: 575–580CrossRefGoogle Scholar
  106. 106.
    Waksman R, Pakala R, Kuchulakanti PK, et al. Safety and efficacy of bioabsorbablemagnesium alloy stents in porcine coronary arteries. Catheter Cardiovasc Interv, 2006, 68: 607–617CrossRefGoogle Scholar
  107. 107.
    Di Mario C, Griffiths H, Goktekin O, et al. Drug-eluting bioabsorbable magnesium stent. J Interv Cardiol, 2004, 17: 391–395CrossRefGoogle Scholar
  108. 108.
    Erbel R, Di Mario C, Bartunek J, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet, 2007, 369: 1869–1875CrossRefGoogle Scholar
  109. 109.
    Schranz D, Zartner P, Michel-Behnke I, et al. Bioabsorbable metal stents for percutaneous treatment of critical recoarctation of the aorta in a newborn. Catheter Cardiovasc Interv, 2006, 67: 671–673CrossRefGoogle Scholar
  110. 110.
    Gu X, Zheng Y, Cheng Y, et al. In vitro corrosion and biocompatibility of binarymagnesium alloys. Biomaterials, 2009, 30: 484–498CrossRefGoogle Scholar
  111. 111.
    Hiromoto S, Inoue M, Taguchi T, et al. In vitro and in vivo biocompatibility and corrosion behaviour of a bioabsorbable magnesium alloy coated with octacalcium phosphate and hydroxyapatite. Acta Biomater, 2015, 11: 520–530CrossRefGoogle Scholar
  112. 112.
    Hiromoto S, Tomozawa M, Maruyama N. Fatigue property of a bioabsorbable magnesium alloy with a hydroxyapatite coating formed by a chemical solution deposition. J Mech Behav Biomedical Mater, 2013, 25: 1–10CrossRefGoogle Scholar
  113. 113.
    Bowen PK, Drelich J, Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Adv Mater, 2013, 25: 2577–2582CrossRefGoogle Scholar
  114. 114.
    Liu X, Sun J, Yang Y, et al. In vitro investigation of ultra-pure Zn and its mini-tube as potential bioabsorbable stent material. Mater Lett, 2015, 161: 53–56CrossRefGoogle Scholar
  115. 115.
    Lin W, Zhang G, Cao P, et al. Cytotoxicity and its testmethodology for a bioabsorbable nitrided iron stent. J Biomed Mater Res, 2015, 103: 764–776CrossRefGoogle Scholar
  116. 116.
    Coe JD, Vaccaro AR. Instrumented transforaminal lumbar interbody fusion with bioresorbable polymer implants and iliac crest autograft. Spine, 2005, 30: S76–S83CrossRefGoogle Scholar
  117. 117.
    Ignatius AA, Augat P, Ohnmacht M, et al. A new bioresorbable polymer for screw augmentation in the osteosynthesis of osteoporotic cancellous bone: a biomechanical evaluation. J Biomed Mater Res, 2001, 58: 254–260CrossRefGoogle Scholar
  118. 118.
    Krucoff MW, Kereiakes DJ, Petersen JL, et al. A novel bioresorbable polymer paclitaxel-eluting stent for the treatment of single and multivessel coronary disease. J Am Coll Cardiol, 2008, 51: 1543–1552CrossRefGoogle Scholar
  119. 119.
    Kostopoulos L, Karring T. Guided bone regeneration in mandibular defects in rats using a bioresorbable polymer. Clin Oral Implants Res, 1994, 5: 66–74CrossRefGoogle Scholar
  120. 120.
    Dubok VA. Bioceramics—yesterday, today, tomorrow. Powder Metall Metal Ceram, 2000, 39: 381–394CrossRefGoogle Scholar
  121. 121.
    Safronova T, Kuznetsov A, Korneychuk S, et al. Calcium phosphate powders synthesized from solutions with [Ca2+]/[PO4 3-]=1 for bioresorbable ceramics. Cent Eur J Chem, 2009, 7: 184–191Google Scholar
  122. 122.
    Bohner M. Bioresorbable ceramics. In: Buchanan FJ (Ed.). Degradation Rate of Bioresorbable Materials. Cambridge: Woodhead Publishing, 2008, 95–114CrossRefGoogle Scholar
  123. 123.
    Seitz JM, Eifler R, Stahl J, et al. Characterization of MgNd2 alloy for potential applications in bioresorbable implantable devices. Acta Biomater, 2012, 8: 3852–3864CrossRefGoogle Scholar
  124. 124.
    Wen CE, Yamada Y, Shimojima K, et al. Porous bioresorbablemagnesium as bone substitute. MSF, 2003, 419–422: 1001–1006CrossRefGoogle Scholar
  125. 125.
    Campos CM, Muramatsu T, Iqbal J, et al. Bioresorbable drug-eluting magnesium-alloy scaffold for treatment of coronary artery disease. Int J Mol Sci, 2013, 14: 24492–24500CrossRefGoogle Scholar
  126. 126.
    Kirkland NT, Birbilis N, Walker J, et al. In-vitro dissolution ofmagnesium-calcium binary alloys: clarifying the unique role of calcium additions in bioresorbable magnesium implant alloys. J Biomed Mater Res, 2010, 95B: 91–100CrossRefGoogle Scholar
  127. 127.
    Gastaldi D, Sassi V, Petrini L, et al. Continuum damage model for bioresorbable magnesium alloy devices —application to coronary stents. J Mech Behav Biomed Mater, 2011, 4: 352–365CrossRefGoogle Scholar
  128. 128.
    Kitabata H, Waksman R, Warnack B. Bioresorbable metal scaffold for cardiovascular application: current knowledge and future perspectives. Cardiovasc Revasc Med, 2014, 15: 109–116CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yang Liu (刘洋)
    • 1
  • Yufeng Zheng (郑玉峰)
    • 1
    Email author
  • Byron Hayes (拜伦海耶斯)
    • 2
  1. 1.Department of Materials Science and Engineering, College of EngineeringPeking UniversityBeijingChina
  2. 2.Biomaterials Research and Development, Medical Product DivisionW.L. Gore & Associates, IncFlagstaffUSA

Personalised recommendations