Science China Materials

, Volume 60, Issue 4, pp 335–342 | Cite as

Large field emission current and density from robust carbon nanotube cathodes for continuous and pulsed electron sources

  • Jiangtao Chen (陈江涛)
  • Bingjun Yang (杨兵军)
  • Xiahui Liu (刘夏辉)
  • Juan Yang (杨娟)
  • Linfan Cui (崔琳凡)
  • Xingbin Yan (阎兴斌)


Highly adhesive cold cathodes with high field emission performance are fabricated by using a screen-printingmethod. The emission density of carbon nanotube (CNT) cold cathode reaches 207.0 mA cm−2 at an electric field of 4.5 V μm−1 under continuous driving mode, and high peak current emission of 315.8 mA corresponding to 4.5 A cm−2 at the electric field of 10.3 V μm−1 under pulsed driving mode. The emission patterns of the cold cathodes are of excellent uniformity that was revealed by vivid luminescent patterns of phosphor coated transparent indium tin oxide (ITO) anode. The cold cathodes also exhibit highly stable emission under continuous and pulsed driving modes. The high adhesion of CNTs tomolybdenum substrates results in robust cold cathodes and is responsible for the high field emission performance. This robust CNT emitter could meet the operating requirements of continuous and pulsed electron sources, and it provides promising applications in various vacuummicro/nanoelectronic devices.


field emission carbon nanotube cold electron source 



本文采用丝网印刷技术制备了具有高粘接性能的碳纳米管冷阴极. 该碳纳米管冷阴极在直流连续及脉冲场下均具有优异的场发射 性能, 同时具有高发射电流密度与发射总电流, 可以满足高功率器件对冷阴极电子源的使用需求. 在直流连续场下, 该冷阴极的电流发射 密度可达到207.0 mA cm−2 (电场强度为4.5 V μm−1);在脉冲场(200 Hz, 10 μs)激发下, 峰值电流密度最高可达4.5 A cm−2(电场强度为10.3 V μm−1), 同时具有高的峰值发射电流(315.8 mA). 为观察阴极发射均匀性, 采用荧光板为阳极进行实时监测, 发现此印刷阴极发射较均一; 稳 定性测试表明该阴极在连续及脉冲场下均具有良好的发射稳定性. 该冷阴极同时具有高电流密度及高发射电流, 可以满足高功率真空电 子器件的使用要求, 在真空微纳电子器件中显示出巨大的应用前景.

Supplementary material

40843_2016_9016_MOESM1_ESM.pdf (812 kb)
Large field emission current and density from robust carbon nanotube cathodes for continuous and pulsed electron sources


  1. 1.
    Whaley DR, Duggal R, Armstrong CM, et al. 100 W operation of a cold cathode TWT. IEEE Trans Electron Devices, 2009, 56: 896–905CrossRefGoogle Scholar
  2. 2.
    Verma P, Gautam S, Pal S, et al. Carbon nanotube-based cold cathode for high powermicrowave vacuum electronic devices: a potential field emitter. Defence Sci J, 2008, 58: 650–654CrossRefGoogle Scholar
  3. 3.
    Milne WI, Teo KBK, Minoux E, et al. Aligned carbon nanotubes/ fibers for applications in vacuum microwave amplifiers. J Vac Sci Technol B, 2006, 24: 345–348CrossRefGoogle Scholar
  4. 4.
    Xu NS, Huq SE. Novel cold cathode materials and applications. Mater Sci Eng-R-Rep, 2005, 48: 47–189CrossRefGoogle Scholar
  5. 5.
    Yanagisawa H, Hafner C, Doná P, et al. Laser-induced field emission from a tungsten tip: optical control of emission sites and the emission process. Phys Rev B, 2010, 81: 115429CrossRefGoogle Scholar
  6. 6.
    Sankaran KJ, Afsal M, Lou SC, et al. Electron field emission enhancement of vertically aligned ultrananocrystalline diamond-coated ZnO core-shell heterostructured nanorods. Small, 2014, 10: 179–185CrossRefGoogle Scholar
  7. 7.
    Chen S, Shang M, Gao F, et al. Extremely stable current emission of P-doped SiC flexible field emitters. Adv Sci, 2016, 3: 1500256CrossRefGoogle Scholar
  8. 8.
    Chen J, Cui L, Sun D, et al. Enhanced field emission properties from aligned graphenes fabricated on micro-hole patterned stainless steel. Appl Phys Lett, 2014, 105: 213111CrossRefGoogle Scholar
  9. 9.
    Chen J, Yang B, Liu X, et al. Field electron emission from pencildrawn cold cathodes. Appl Phys Lett, 2016, 108: 193112CrossRefGoogle Scholar
  10. 10.
    Sridhar S, Tiwary C, Vinod S, et al. Field emission with ultralow turn on voltage from metal decorated carbon nanotubes. ACS Nano, 2014, 8: 7763–7770CrossRefGoogle Scholar
  11. 11.
    Lahiri I, Wong J, Zhou Z, et al. Ultra-high current density carbon nanotube field emitter structure on three-dimensional microchanneled copper. Appl Phys Lett, 2012, 101: 063110CrossRefGoogle Scholar
  12. 12.
    Gautier LA, Le Borgne V, El Khakani MA. Field emission properties of graphenated multi-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition. Carbon, 2016, 98: 259–266CrossRefGoogle Scholar
  13. 13.
    Chen Z, den Engelsen D, Bachmann PK, et al. High emission current density microwave-plasma-grown carbon nanotube arrays by postdepositional radio-frequency oxygen plasma treatment. Appl Phys Lett, 2005, 87: 243104CrossRefGoogle Scholar
  14. 14.
    Park SA, Song EH, Kang BH, et al. Carbon nanotube field emitters on KOVAR substratemodified by randompattern. J Nanopart Res, 2015, 17: 318CrossRefGoogle Scholar
  15. 15.
    Kim JW, Jeong JW, Kang JT, et al. Great improvement in adhesion and uniformity of carbon nanotube field emitters through reactive nanometer-scale SiC fillers. Carbon, 2015, 82: 245–253CrossRefGoogle Scholar
  16. 16.
    Calderón-Colón X, Geng H, Gao B, et al. A carbon nanotube field emission cathode with high current density and long-termstability. Nanotechnology, 2009, 20: 325707CrossRefGoogle Scholar
  17. 17.
    Lei W, Zhu Z, Liu C, et al. High-current field-emission of carbon nanotubes and its application as a fast-imaging X-ray source. Carbon, 2015, 94: 687–693CrossRefGoogle Scholar
  18. 18.
    Makishima H, Miyano S, Imura H, et al. Design and performance of traveling-wave tubes using field emitter array cathodes. Appl Surface Sci, 1999, 146: 230–233CrossRefGoogle Scholar
  19. 19.
    Jensen KL. Field emitter arrays for plasma and microwave source applications. Phys Plasmas, 1999, 6: 2241–2253CrossRefGoogle Scholar
  20. 20.
    Kar R, Sarkar SG, Basak CB, et al. Effect of substrate heating and microwave attenuation on the catalyst free growth and field emission of carbon nanotubes. Carbon, 2015, 94: 256–265CrossRefGoogle Scholar
  21. 21.
    Cha SI, Kim KT, Arshad SN, et al. Field-emission behavior of a carbon-nanotube-implanted Co nanocomposite fabricated from pearl-necklace-structured carbon nanotube/Co powders. Adv Mater, 2006, 18: 553–558CrossRefGoogle Scholar
  22. 22.
    Deng JH, Cheng L, Wang FJ, et al. High current density and longtime stable field electron transfer from large-area densely arrayed graphene nanosheet–carbon nanotube hybrids. ACS Appl Mater Interfaces, 2014, 6: 21558–21566CrossRefGoogle Scholar
  23. 23.
    Cui L, Chen J, Yang B, et al. High current emission from patterned aligned carbon nanotubes fabricated by plasma-enhanced chemical vapor deposition. Nanoscale Res Lett, 2015, 10: 483CrossRefGoogle Scholar
  24. 24.
    Choi YC, Kang JT, Park S, et al. Preparation of a miniature carbon nanotube paste emitter for very high resolution X-ray imaging. Carbon, 2016, 100: 302–308CrossRefGoogle Scholar
  25. 25.
    Li C, Zhang Y, Cole MT, et al. Hot electron field emission via individually transistor-ballasted carbon nanotube arrays. ACS Nano, 2012, 6: 3236–3242CrossRefGoogle Scholar
  26. 26.
    Zhang Y, Deng S, Du J, et al. Effects of pulsewidth and area of carbon nanotube films on their pulsed field emission characteristics. IEEE Trans Electron Devices, 2013, 60: 2677–2681CrossRefGoogle Scholar
  27. 27.
    Yang X, Li Z, He F, et al. Enhanced field emission from a carbon nanotube array coated with a hexagonal boron nitride thin film. Small, 2015, 11: 3710–3716CrossRefGoogle Scholar
  28. 28.
    Pernía Leal M, Assali M, Cid JJ, et al. Synthesis of 1D-glyconanomaterials by a hybrid noncovalent–covalent functionalization of single wall carbon nanotubes: a study of their selective interactions with lectins and with live cells. Nanoscale, 2015, 7: 19259–19272CrossRefGoogle Scholar
  29. 29.
    Di Y, Xiao M, Zhang X, et al. Large and stable emission current from synthesized carbon nanotube/fiber network. J Appl Phys, 2014, 115: 064305CrossRefGoogle Scholar
  30. 30.
    Zanin H, May PW, Hamanaka MHMO, et al. Field emission from hybrid diamond-like carbon and carbon nanotube composite structures. ACS Appl Mater Interfaces, 2013, 5: 12238–12243CrossRefGoogle Scholar
  31. 31.
    Li J, Chen J, Luo B, et al. The improvement of the field emission properties from graphene films: Ti transition layer and annealing process. AIP Adv, 2012, 2: 022101CrossRefGoogle Scholar
  32. 32.
    Vincent P, Purcell ST, Journet C, et al. Modelization of resistive heating of carbon nanotubes during field emission. Phys Rev B, 2002, 66: 075406CrossRefGoogle Scholar
  33. 33.
    Purcell ST, Vincent P, Journet C, et al. Hot nanotubes: stable heating of individualmultiwall carbon nanotubes to 2000 K induced by the field-emission current. Phys Rev Lett, 2002, 88: 105502CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jiangtao Chen (陈江涛)
    • 1
  • Bingjun Yang (杨兵军)
    • 1
  • Xiahui Liu (刘夏辉)
    • 1
  • Juan Yang (杨娟)
    • 1
  • Linfan Cui (崔琳凡)
    • 1
  • Xingbin Yan (阎兴斌)
    • 1
  1. 1.Laboratory of Clean Energy Chemistry andMaterials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouChina

Personalised recommendations