Science China Materials

, Volume 60, Issue 3, pp 251–257 | Cite as

Variable-temperature preparation and performance of NiCl2 as a cathode material for thermal batteries

  • Wenjun Liu (刘文军)
  • Haiping Liu (刘海萍)Email author
  • Sifu Bi (毕四富)
  • Lixin Cao (曹立新)
  • Yue Sun (孙越)


Nickel(II) chloride materials were synthesized via a novel two-step variable-temperature method for the use as a cathode material in Li-B/NiCl2 cells with the LiCl-LiBr-LiF electrolyte. The influence of temperature on its structure, surface morphology, and electrochemical performance was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical measurements of single cells. XRD results showed that after pre-dehydration for 2 h at 270°C followed by sintering for 5 h at 600°C, the crystal water in nickel chloride hexahydrate could be removed effectively. The SEM results showed that particles recombined to form larger coarse particles and presented a layered structure. Discharge tests showed that the 600°C-treated materials demonstrated remarkable specific capacities of 210.42 and 242.84 mA h g−1 at constant currents of 0.5 and 2.0 A, respectively. Therefore, the Li-B/NiCl2 thermal battery showed excellent discharge performance. The present work demonstrates that NiCl2 is a promising cathode material for thermal batteries and this two-step variable-temperature method is a simple and useful method for the fabrication of NiCl2 materials.


thermal battery nickel chloride variable temperature electrochemical performance 



本文采用两步变温法制备了无水氯化镍材料. 并以所制备的氯化镍为正极, 锂硼合金为负极, LiCl-LiBr-LiF 为电解质, 组成单体锂热电 池. 通过XRD、SEM和单体电池电化学测试分析了温度对氯化镍材料的结构、表面形貌以及电化学性能的影响. XRD结果表明270°C预处理 2 h, 600°C高温烧结5 h后, 氯化镍中的结晶水能够被完全去除; SEM结果表明氯化镍热处理后晶粒重组长大并呈现层状结构. 经600°C热处理 后的氯化镍材料在0.5 A和2.0 A恒流放电时的比容量分别可达210.42和242.84 mA h g−1, 表明以热处理后的氯化镍为正极的锂热电池具有良好 的放电性能. 本文研究结果表明氯化镍是一种非常有潜力的热电池正极材料, 而两步变温法是制备无水氯化镍材料的一种简单实用的方法.



This work was supported by Shanghai Institute of Space Power-sources (SISP).


  1. 1.
    Klasons V, Lamb CM. Thermal batteries. In Linden D, Reddy TB (eds.). Handbook of Batteries, 3rd edition, New York: McGraw-Hill, 2002, 21.1–21.22Google Scholar
  2. 2.
    Guidotti RA, Masset P. Thermally activated (“thermal”) battery technology. J Power Sources, 2006, 161: 1443–1449CrossRefGoogle Scholar
  3. 3.
    Masset P. Iodide-based electrolytes: a promising alternative for thermal batteries. J Power Sources, 2006, 160: 688–697CrossRefGoogle Scholar
  4. 4.
    Cheong H, Ha S, Choi Y. Surfacemodified ceramic fiber separators for thermal batteries. J Ceramic Proc Res, 2012, 13: S308–S311Google Scholar
  5. 5.
    Guidotti RA, Reinhardt FW. Characterization of low-melting electrolytes for potential geothermal borehole power supplies: the LiBr-KBr-LiF eutectic. Office of Scientific & Technical Information Technical Reports, 1998, 6Google Scholar
  6. 6.
    Chae SH, Kang SH, Cheong HW, et al. Thermal batteries with ceramic felt separators—Part 1: Wetting, loading behavior and chemical stability. Ceramics Int, 2017, 43: 4015–4022CrossRefGoogle Scholar
  7. 7.
    Hillel T, Ein-Eli Y.Copper vanadate as promising high voltage cathodes for Li thermal batteries. J Power Sources, 2013, 229: 112–116Google Scholar
  8. 8.
    Au M. Nanostructured thermal batteries with high power density. J Power Sources, 2003, 115: 360–366CrossRefGoogle Scholar
  9. 9.
    Xing J, Zhu Y, Jiao Q. Rapid synthesis of water-soluble NiCl2 nanorods via recrystallization for super capacitors applications. J New Mater Electrochem Syst, 2014, 17: 209–211Google Scholar
  10. 10.
    Guidotti RA, Reinhardt FW, Dai J, et al. Performance of thermal cells and batteriesmade with plasma-sprayed cathodes and anodes. J Power Sources, 2006, 160: 1456–1464CrossRefGoogle Scholar
  11. 11.
    Freitas GCS, Peixoto FC, Vianna AS. Simulation of a thermal battery using Phoenics®. J Power Sources, 2008, 179: 424–429CrossRefGoogle Scholar
  12. 12.
    Searcy JQ, Quinn RK, Saxton HJ. Recent developments in Li(Si)FeS2 thermal battery technology. In: 13th International Power Sources Symppsium, Brighton, UK, 1982Google Scholar
  13. 13.
    Guidotti RA, Reinhardt FW. Screening study of mixed transitionmetal oxides for use as cathodes in thermal batteries. Office of Scientific & Technical Information Technical Reports, 1996Google Scholar
  14. 14.
    Schoeffert S. Thermal batteries modeling, self-discharge and selfheating. J Power Sources, 2005, 142: 361–369CrossRefGoogle Scholar
  15. 15.
    Choi YS, Yu HR, Cheong HW. Electrochemical properties of a lithium-impregnated metal foam anode for thermal batteries. J Power Sources, 2015, 276: 102–104CrossRefGoogle Scholar
  16. 16.
    Yang ZT, Liu XJ, Liu JS, et al. Single phase pyrite synthesized via hydrothermal method. Key Eng Mater, 2013, 562-565: 136–140CrossRefGoogle Scholar
  17. 17.
    Butler P, Guidotti R, Moya L, Reinhardt F. High power thermal battery development. In: International PowerModulator Symposium, 2002Google Scholar
  18. 18.
    Choi Y, Cho S, Lee YS. Effect of the addition of carbon black and carbon nanotube to FeS2 cathode on the electrochemical performance of thermal battery. J Industrial Eng Chem, 2014, 20: 3584–3589CrossRefGoogle Scholar
  19. 19.
    Butler P, Wagner C, Guidotti R, et al. Long-life, multi-tap thermal battery development. J Power Sources, 2004, 136: 240–245CrossRefGoogle Scholar
  20. 20.
    Dai J, Guidotti RA, Xiao TD, Reisner DE. Thermally protective salt material for thermal spraying of electrode materials, US Patent 2002/0018929 A1, 2002Google Scholar
  21. 21.
    Masset PJ, Guidotti RA. Thermal activated (“thermal”) battery technology. J Power Sources, 2008, 178: 456–466CrossRefGoogle Scholar
  22. 22.
    Masset PJ, Guidotti RA. Thermal activated (“thermal”) battery technology. J Power Sources, 2008, 177: 595–609CrossRefGoogle Scholar
  23. 23.
    Kang SH, Chae SH, Cheong HW, et al. Thermal batteries with ceramic felt separators—Part 2: Ionic conductivity, electrochemical and mechanical properties. Ceramics Int, 2017, 43: 4023–4028CrossRefGoogle Scholar
  24. 24.
    Attewell A, Clark AJ. A review of recent developments in thermal batteries. In: Power sources 8: Research and development in non-mechanical electrical power sources; Proceedings of the Twelfth International Symposium, London: Academic Press, 1981, 285–302Google Scholar
  25. 25.
    Prakash J, Redey L, Vissers DR. Electrochemical behavior of nonporous Ni/NiCl2 electrodes in chloroaluminate melts. J Electrochem Soc, 2000, 147: 502CrossRefGoogle Scholar
  26. 26.
    Jin C, Zhou L, Fu L, et al. Synthesis and discharge performances of NiCl2 by surfacemodification of carbon coating as cathodematerial of thermal battery. Appl Surface Sci, 2017, 402: 308–313CrossRefGoogle Scholar
  27. 27.
    Fujiwara S, Inaba M, Tasaka A. New molten salt systems for high temperature molten salt batteries: ternary and quaternary molten salt systems based on LiF–LiCl, LiF–LiBr, and LiCl–LiBr. J Power Sources, 2011, 196: 4012–4018CrossRefGoogle Scholar
  28. 28.
    Guidotti RA, Reinhardt FW, Odinek J. Overview of high-temperature batteries for geothermal and oil/gas borehole power sources. J Power Sources, 2004, 136: 257–262CrossRefGoogle Scholar
  29. 29.
    Lu RS, Liu XJ. Thermal Batteries. BeiJing: National Defense University Press, 2005Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Wenjun Liu (刘文军)
    • 1
  • Haiping Liu (刘海萍)
    • 1
    Email author
  • Sifu Bi (毕四富)
    • 2
  • Lixin Cao (曹立新)
    • 1
  • Yue Sun (孙越)
    • 1
  1. 1.School of Marine Science and TechnologyHarbin Institute of TechnologyWeihaiChina
  2. 2.School of Materials Science and EngineeringHarbin Institute of TechnologyWeihaiChina

Personalised recommendations