Science China Materials

, Volume 59, Issue 3, pp 182–190 | Cite as

Controlled synthesis of high-quality crystals of monolayer MoS2 for nanoelectronic device application

  • Xiaonian Yang (杨小年)
  • Qiang Li (李强)
  • Guofeng Hu (胡国锋)
  • Zegao Wang (王泽高)
  • Zhenyu Yang (杨振宇)
  • Xingqiang Liu (刘兴强)
  • Mingdong Dong (董明东)
  • Caofeng Pan (潘曹峰)Email author


Two-dimensional layered materials have attracted significant interest for their potential applications in electronic and optoelectronics devices. Among them, transition metal dichalcogenides (TMDs), especially molybdenum disulfide (MoS2), is extensively studied because of its unique properties. Monolayer MoS2 so far can be obtained by mechanical exfoliation or chemical vapor deposition (CVD). However, controllable synthesis of large area monolayer MoS2 with high quality needs to be improved and their growth mechanism requires more studies. Here we report a systematical study on controlled synthesis of high-quality monolayer MoS2 single crystals using low pressure CVD. Large-size monolayer MoS2 triangles with an edge length up to 405 μm were successfully synthesized. The Raman and photoluminescence spectroscopy studies indicate high homogenous optical characteristic of the synthesized monolayer MoS2 triangles. The transmission electron microscopy results demonstrate that monolayer MoS2 triangles are single crystals. The back-gated field effect transistors (FETs) fabricated using the as-grown monolayer MoS2 show typical n-type semiconductor behaviors with carrier mobility up to 21.8 cm2 V−1 s−1, indicating excellent electronic property comparing with previously reported CVD grown MoS2 monolayer. The MoS2 FETs also show a high photoresponsivity of 7 A W−1, as well as a fast photo-response time of 20 ms. The improved synthesis method recommended here, which makes material preparation much easier, may strongly promote further research and potential applications.


controlled synthesis method high-quality MoS2 monolayer growth parameters photoresponse properties 



二维层状材料由于其在光电器件方面的潜在应用引起了广泛关注, 二硫化钼(MoS2)是其中研究最多的材料之一. 单层二硫化钼可通过机械剥离或者化学气相合成的方法制备, 但是与石墨烯相比, 大面积且高质量的单层二硫化钼单晶的可控合成仍然有待提高. 本文报道了一种可控合成大面积高质量单层MoS2单晶的方法, 合成出了边长达405 μm的单层二硫化钼三角形. 对产物进行了光谱表征, 结果表明其光学性质十分均匀, 透射电镜表征结果表明产物是单晶结构. 基于单层MoS2的场效应晶体管(FET)表现出良好的电学性能, 其载流子迁移率高达21.8 cm2 V−1 s−1,光响应度为7 A W−1, 响应时间仅为20 ms. 此合成方法使单层MoS2的制备更加简易可靠, 可促进其进一步研究及应用.

Supplementary material

40843_2016_130_MOESM1_ESM.pdf (756 kb)
Supplementary material, approximately 799 KB.


  1. 1.
    Fiori G, Bonaccorso F, Iannaccone G, et al. Electronics based on two-dimensional materials. Nat Nanotechnol, 2014, 9: 768–779CrossRefGoogle Scholar
  2. 2.
    Bernardi M, Palummo M, Grossman JC. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett, 2013, 13: 3664–3670CrossRefGoogle Scholar
  3. 3.
    Eda G, Maier SA. Two-dimensional crystals: managing light for optoelectronics. ACS Nano, 2013, 7: 5660–5665CrossRefGoogle Scholar
  4. 4.
    Radisavljevic B, Whitwick MB, Kis A. Integrated circuits and logic operations based on single-layer MoS2. ACS Nano, 2011, 5: 9934–9938CrossRefGoogle Scholar
  5. 5.
    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nat Nanotechnol, 2011, 6: 147–150CrossRefGoogle Scholar
  6. 6.
    Schmidt H, Wang S, Chu L, et al. Transport properties of monolayer MoS2 grown by chemical vapor deposition. Nano Lett, 2014, 14: 1909–1913CrossRefGoogle Scholar
  7. 7.
    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol, 2013, 8: 497–501CrossRefGoogle Scholar
  8. 8.
    Wu S, Huang C, Aivazian G, et al. Vapor-solid growth of high optical quality MoS2 monolayers with near-unity valley polarization. ACS Nano, 2013, 7: 2768–2772CrossRefGoogle Scholar
  9. 9.
    Zhang J, Najmaei S, Lin H, Lou J. MoS2 atomic layers with artificial active edge sites as transparent counter electrodes for improved performance of dye-sensitized solar cells. Nanoscale, 2014, 6: 5279–5283CrossRefGoogle Scholar
  10. 10.
    Wu W, Wang L, Li Y, et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature, 2014, 514: 470–474CrossRefGoogle Scholar
  11. 11.
    Cho B, Hahm MG, Choi M, et al. Charge-transfer-based gas sensing using atomic-layer MoS2. Sci Rep, 2015, 5: 8052CrossRefGoogle Scholar
  12. 12.
    Liu K, Yan Q, Chen M, et al. Elastic properties of chemical-vapordeposited monolayer MoS2, WS2, and their bilayer heterostructures. Nano Lett, 2014, 14: 5097–5103CrossRefGoogle Scholar
  13. 13.
    Liu B, Chen L, Liu G, et al. High-performance chemical sensing using schottky-contacted chemical vapor deposition grown mono layer MoS2 transistors. ACS Nano, 2014, 8, 5304–5314CrossRefGoogle Scholar
  14. 14.
    Late D, Liu B, Matte H, Dravid V, Rao C. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano, 2012, 6: 5635–5641CrossRefGoogle Scholar
  15. 15.
    Late D, Huang Y, Liu B, et al. Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 2013, 7: 4879–4891CrossRefGoogle Scholar
  16. 16.
    Zhan Y, Liu Z, Najmaei S, Ajayan P, Lou J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small, 2012, 8: 966–971CrossRefGoogle Scholar
  17. 17.
    Van der Zande M, Huang Y, Chenet A, et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat Mater, 2013, 12: 554–561CrossRefGoogle Scholar
  18. 18.
    Kim S, Sangwan K, Jariwala D, et al. Influence of stoichiometry on the optical and electrical properties of chemical vapor deposition derived MoS2. ACS Nano, 2014, 8: 10551–10558CrossRefGoogle Scholar
  19. 19.
    Shi Y, Li H, Li J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem Soc Rev, 2015, 44: 2744–2756CrossRefGoogle Scholar
  20. 20.
    Liu Z, Amani M, Najmaei S, et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat Commun, 2014, 5: 5246CrossRefGoogle Scholar
  21. 21.
    Najmaei S, Liu Z, Zhou W, et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat Mater, 2013, 12: 754–759CrossRefGoogle Scholar
  22. 22.
    Amani M, Chin L, Birdwell G, et al. Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition. Appl Phys Lett, 2013, 102: 193107CrossRefGoogle Scholar
  23. 23.
    Jeon J, Jang K, Jeon M, et al. Layer-controlled CVD growth of large-area two-dimensional MoS2 films. Nanoscale, 2015, 7: 1688–1695CrossRefGoogle Scholar
  24. 24.
    Ling X, Lee H, Lin Y, et al. Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett, 2014: 14, 464–472CrossRefGoogle Scholar
  25. 25.
    Zhang J, Yu H, Chen W, et al. Scalable growth of high-quality polycrystalline MoS2 monolayers on SiO2 with tunable grain sizes. ACS Nano, 2014, 8: 6024–6030CrossRefGoogle Scholar
  26. 26.
    Wang S, Rong Y, Fan Y, et al. Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Chem Mat, 2014, 26: 6371–6379CrossRefGoogle Scholar
  27. 27.
    Lee H, Zhang Q, Zhang W, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater, 2012, 24: 2320–2325CrossRefGoogle Scholar
  28. 28.
    Ji Q, Zhang Y, Zhang Y, Liu Z. Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: engineered substrates from amorphous to single crystalline. Chem Soc Rev, 2015, 44: 2587–2602CrossRefGoogle Scholar
  29. 29.
    Balendhran S, Ou Z, Bhaskaran M, et al. Atomically thin layers of MoS2 via a two step thermal evaporation-exfoliation method. Nanoscale, 2012, 4: 461–466CrossRefGoogle Scholar
  30. 30.
    Duan X, Wang C, Shaw C, et al. Lateral epitaxial growth of twodimensional layered semiconductor heterojunctions. Nat Nanotechnol, 2014, 9: 1024–1030CrossRefGoogle Scholar
  31. 31.
    Najmaei S, Amani M, Chin L, et al. Electrical transport properties of polycrystalline monolayer molybdenum disulfide. ACS Nano, 2014, 8: 7930–7937CrossRefGoogle Scholar
  32. 32.
    Liu L, Fathi M, Chen L, et al. Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study. ACS Nano, 2015, 9: 6119–6127CrossRefGoogle Scholar
  33. 33.
    Zhou H, Wang C, Shaw C, et al. Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Lett, 2015, 15: 709–713CrossRefGoogle Scholar
  34. 34.
    Kumar K, Dhar S, Choudhury H, Shivashankar A, Raghavan S. A predictive approach to CVD of crystalline layers of TMDs: the case of MoS2. Nanoscale, 2015, 7: 7802–7810CrossRefGoogle Scholar
  35. 35.
    Yin Y, Li H, Zhang H, et al. Single-layer MoS2 phototransistors. ACS Nano, 2012, 6: 74–80CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Xiaonian Yang (杨小年)
    • 1
  • Qiang Li (李强)
    • 2
  • Guofeng Hu (胡国锋)
    • 1
  • Zegao Wang (王泽高)
    • 2
  • Zhenyu Yang (杨振宇)
    • 3
  • Xingqiang Liu (刘兴强)
    • 1
  • Mingdong Dong (董明东)
    • 2
  • Caofeng Pan (潘曹峰)
    • 1
    Email author
  1. 1.Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijingChina
  2. 2.Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhus CDenmark
  3. 3.Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of EducationWuhan UniversityWuhanChina

Personalised recommendations