Skip to main content
Log in

Thermal induced single grain boundary break junction for suspended nanogap electrodes

  • Letter
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Construction of molecular devices is one of the most promising approaches for the ultimate miniaturization of electronic devices, the groundwork of which is the fabrication of nanogap electrodes. Here we report a method to fabricate nanogap electrodes through thermal annealing based on single grain boundary junction. By performing low temperature thermal process, single grain boundary junction can be broken and change into a suspended gap with gap width down to sub-5 nanometers, which is beyond the fabrication precision of traditional lithography technologies. With the advantage of shape stability, no debris and high time efficiency, such nanogap electrodes is promising in constructing molecular devices with two or three-terminals.

中文摘要

纳米尺度分子器件是最有可能实现超高密度集成电路的途径之一, 而纳米间隙电极对的制备是分子器件的构筑基础. 本文利用热处理诱导晶间断裂现象来进行纳米间隙电极对的构筑. 通过低温热处理过程实现单个金晶界结的断裂, 使其从晶界结转化为悬空纳米间隙电极对. 所制备的纳米间隙电极对的间隙尺寸可达到亚5纳米, 采用 传统的微纳米加工方法很难实现该尺寸间隙电极对. 利用热处理诱导晶间断裂所制备的纳米间隙电极对具有诸多优点, 如形状稳定性好、间隙中无杂质颗粒残留等, 有望用来构筑两端或三端分子器件.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Li J, Tang ZP, Hu R, et al. Probing surface hydrophobicity of individual protein at single-molecule resolution using solid-state nanopores. Sci China Mater 2015, 58: 455–466

    Article  Google Scholar 

  2. Li T, Hu WP, Zhu DB. Nanogap electrodes. Adv Mater, 2010, 22: 286–300

    Article  Google Scholar 

  3. Aviram A, Joachim C, Pomerantz M. Evidence of switching and rectification by a single molecule effected with a scanning tunneling microscope. Chem Phys Lett, 1988, 146: 490–495

    Article  Google Scholar 

  4. Liang WJ, Shores MP, Bockrath M, Long JR, Park H. Kondo resonance in a single-molecule transistor. Nature, 2002, 417: 725–729

    Article  Google Scholar 

  5. Park H, Park J, Lim AKL, et al. Nanomechanical oscillations in a single-C60 transistor. Nature, 2000, 407: 57–60

    Article  Google Scholar 

  6. Kim Y, Pietsch T, Erbe A, Belzig W, Scheer E. Benzenedithiol: a broad-range single-channel molecular conductor. Nano Lett, 2011, 11: 3734–3738

    Article  Google Scholar 

  7. Dadosh T, Gordin Y, Krahne R, et al. Measurement of the conductance of single conjugated molecules. Nature, 2005, 436: 677–680

    Article  Google Scholar 

  8. Moreland J, Ekin JW. Electron-tunneling experiments using Nb-Sn break junctions. J Appl Phys, 1985, 58: 3888–3895

    Article  Google Scholar 

  9. Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM. Conductance of a molecular junction. Science, 1997, 278: 252–254

    Article  Google Scholar 

  10. Tian JH, Liu B, Li XL, et al. Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method. J Am Chem Soc, 2006, 128: 14748–14749

    Article  Google Scholar 

  11. Park H, Lim AKL, Alivisatos AP, Park J, McEuen PL. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl Phys Lett, 1999, 75: 301–303

    Article  Google Scholar 

  12. Morpurgo AF, Marcus CM, Robinson DB. Controlled fabrication of metallic electrodes with atomic separation. Appl Phys Lett, 1999, 74: 2084–2086

    Article  Google Scholar 

  13. Kashimura Y, Nakashima H, Furukawa K, Torimitsu K. Fabrication of nano-gap electrodes using electroplating technique. Thin Solid Films, 2003, 438: 317–321

    Article  Google Scholar 

  14. Hu WP, Jiang J, Nakashima H, et al. Electron transport in selfassembled polymer molecular junctions. Phys Rev Lett, 2006, 96: 027801

    Article  Google Scholar 

  15. Hu WP, Nakashima H, Furukawa K, et al. Self-assembled rigid conjugated polymer nanojunction and its nonlinear current-voltage characteristics at room temperature. Appl Phys Lett, 2004, 85: 115–117

    Article  Google Scholar 

  16. Zandbergen HW, van Duuren RJHA, Alkemade PFA, et al. Sculpting nanoelectrodes with a transmission electron beam for electrical and geometrical characterization of nanoparticles. Nano Lett, 2005, 5: 549–553

    Article  Google Scholar 

  17. Fischbein MD, Drndic M. Sub-10 nm device fabrication in a transmission electron microscope. Nano Lett, 2007, 7: 1329–1337

    Article  Google Scholar 

  18. Luber SM, Zhang F, Lingitz S, et al. High-aspect-ratio nanogap electrodes for averaging molecular conductance measurements. Small, 2007, 3: 285–289

    Article  Google Scholar 

  19. Liu SH, Tok JBH, Bao ZN. Nanowire lithography: fabricating controllable electrode gaps using Au-Ag-Au nanowires. Nano Lett, 2005, 5: 1071–1076

    Article  Google Scholar 

  20. Tian JH, Yang Y, Liu B, et al. The fabrication and characterization of adjustable nanogaps between gold electrodes on chip for electrical measurement of single molecules. Nanotechnology, 2010, 21: 274012

    Article  Google Scholar 

  21. Li XL, Hua SZ, Chopra HD, Tao NJ. Formation of atomic point contacts and molecular junctions with a combined mechanical break junction and electrodeposition method. Micro Nano Lett, 2006, 1: 83–88

    Article  Google Scholar 

  22. Yang Y, Chen ZB, Liu JY, et al. An electrochemically assisted mechanically controllable break junction approach for single molecule junction conductance measurements. Nano Res, 2011, 4: 1199–1207.

    Article  Google Scholar 

  23. Jain T, Westerlund F, Johnson E, Moth-Poulsen K, Bjornholm T. Self-assembled nanogaps via seed-mediated growth of end-to-end linked gold nanorods. ACS Nano, 2009, 3: 828–834

    Article  Google Scholar 

  24. Jiang L, Dong HL, Meng Q, et al. Molecular crystal lithography: a facile and low-cost approach to fabricate nanogap electrodes. Adv Mater, 2012, 24: 694–698

    Article  Google Scholar 

  25. Kubatkin S, Danilov A, Hjort M, et al. Single-electron transistor of a single organic molecule with access to several redox states. Nature, 2003, 425: 698–701

    Article  Google Scholar 

  26. Guo XF, Small JP, Klare JE, et al. Covalently bridging gaps in single- walled carbon nanotubes with conducting molecules. Science, 2006, 311: 356–359

    Article  Google Scholar 

  27. Thiele C, Vieker H, Beyer A, et al. Fab rication of carbon nanotube nanogap electrodes by helium ion sputtering for molecular contacts. Appl Phys Lett, 2014, 104, 103102

    Article  Google Scholar 

  28. Wang ZR, Dong HL, Li T, et al. Role of redox centre in charge transport investigated by novel self-assembled conjugated polymer molecular junctions. Nat Commun, 2015, 6

    Google Scholar 

  29. Ci S, Cai PW, Wen ZH, Li JH. Graphene-based electrode materials for microbial fuel cells. Sci China Mater, 2015, 58: 496–509

    Article  Google Scholar 

  30. Prins F, Barreiro A, Ruitenberg JW, et al. Roo m-temperature gating of molecular junctions using few-layer graphene nanogap electrodes. Nano Lett, 2011, 11: 4607–4611

    Article  Google Scholar 

  31. Guo X F, Whalley A, Klare JE, et al. Single-molecule devices as scaffolding for multicomponent nanostructure assembly. Nano Lett, 2007, 7: 1119–1122

    Article  Google Scholar 

  32. Cao Y, Dong S, Liu S, et al. Building high-throughput molecular junctions using indented graphene point contacts. Angew Chem Int Ed, 2012, 51: 12228–12232

    Article  Google Scholar 

  33. Grose JE, Tam ES, Timm C, et al. Tunnelling spectra of individual magnetic endofullerene molecules. Nat Mater, 2008, 7: 884–889

    Article  Google Scholar 

  34. Strachan DR, Smith DE, Fischbein MD, et al. Clean electromigrated nanogaps imaged by transmission electron microscopy. Nano Lett, 2006, 6: 441–444

    Article  Google Scholar 

  35. O’Neill K, Osorio EA, van der Zant HSJ. Self-breaking in planar few-atom Au constrictions for nanometer-spaced electrodes. App Phys Lett, 2007, 90: 133109

    Article  Google Scholar 

  36. Basnar B, Lugstein A, Wanzenboeck H, et al. Focused ion beam induced surface amorphization and sputter processes. J Vac Sci Technol B, 2003, 21: 927–930

    Article  Google Scholar 

  37. Steinmann P, Weaver JMR. Fabrication of sub-5 nm gaps between metallic electrodes using conventional lithographic techniques. J Vac Sci Technol B, 2004, 22: 3178–3181

    Article  Google Scholar 

  38. Fischbein MD, Drndic M. Nanogaps by direct lithography for high-resolution imaging and electronic characterization of nanostructures. Appl Phys Lett, 2006, 88: 063116

    Article  Google Scholar 

  39. Cui AJ, Liu Z, Dong HL, et al. Single grain boundary break junction for suspended nanogap electrodes with gapwidth down to 1-2 nm by focused ion beam milling. Adv Mater, 2015, 27: 3002–3006

    Article  Google Scholar 

  40. Alonzo-Medina GM, Gonzalez-Gonzalez A, Sacedon JL, Oliva AI. Proceeding of Third Congress on Materials Science and Engineering, Cncim-Mexico, 2012, 45: 012013

    Google Scholar 

  41. Mullins WW. Theory of thermal grooving. J Appl Phys, 1957, 28: 333–339

    Article  Google Scholar 

  42. Stone HA, Aziz MJ, Margetis D. Grooving of a grain boundary by evaporation-condensation below the roughening transition. J Appl Phys, 2005, 97: 113535

    Article  Google Scholar 

  43. Palizdar Y, San Martin D, Ward M, et al. Observation of thermally etched grain boundaries with the FIB/TEM technique. Mater Charact, 2013, 84: 28–33

    Article  Google Scholar 

  44. Munoz NE, Gilliss SR, Carter CB. The monitoring of grain-boundary grooves in alumina. Phil Mag Lett, 2004, 84: 21–26

    Article  Google Scholar 

  45. Rabkin E, Klinger L. The fascination of grain boundary grooves. Mater Sci Tech Ser, 2001, 17: 772–776

    Article  Google Scholar 

  46. Rohrer GS. Grain boundary energy anisotropy: a review. J Mater Sci, 2011, 46: 5881–5895

    Article  Google Scholar 

  47. Ludwig W, Pereiro-Lopez E, Bellet D. In situ investigation of liquid Ga penetration in Al bicrystal grain boundaries: grain boundary wetting or liquid metal embrittlement? Acta Mater, 2005, 53: 151–162

    Article  Google Scholar 

  48. Pereiro-Lopez E, Ludwig W, Bellet D, Baruchel J. Grain boundary liquid metal wetting: a synchrotron micro-radiographic investigation. Nucl Instrum Meth B, 2003, 200: 333–338

    Article  Google Scholar 

  49. Sun J, He LB, Lo YC, et al. Liquid-like pseudoelasticity of sub- 10-nm crystalline silver particles. Nat Mater, 2014, 13:1007–1012

    Article  Google Scholar 

  50. Freund LB, Suresh S. Thin Film Materials: Stress, Defect Formation and Surface Evolution. Cambridge: Cambridge University Press, 2003, 44–49

    Google Scholar 

  51. Qin X, Dong HL, Hu WP. Green light-emitting diode from bromine based organic-inorganic halide perovskite. Sci China Mater 2015, 58: 186–191

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenping Hu.

Additional information

Ajuan Cui graduated in physics from Northwest University in 2009. She obtained her PhD degree in condensed matter physics from the Institute of Physics, Chinese Academy of Sciences in June 2014. In July 2014 she joined the Institute of Chemistry, Chinese Academy of Sciences (ICCAS) as a post-doctor. Her scientific interests include molecular electronics, micro/nanostructures with novel electrical/optical properties, micro/nano fabrication.

Wenping Hu is a professor of the ICCAS. He received his PhD degree from the ICCAS in 1999. He then joined Osaka University as a research fellow of Japan Society for the Promotion of Sciences and Stuttgart University as an Alexander von Humboldt. In 2003 he worked for Nippon Telephone and Telegraph, and then returned to ICCAS and was promoted as a full professor. His research focuses on molecular electronics and he has more than 330 peer reviewed publications with citation over 9000 times (H index=52).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, A., Liu, Z., Dong, H. et al. Thermal induced single grain boundary break junction for suspended nanogap electrodes. Sci. China Mater. 58, 769–774 (2015). https://doi.org/10.1007/s40843-015-0092-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-015-0092-8

Keywords

Navigation