Science China Materials

, Volume 58, Issue 9, pp 715–766 | Cite as

Beyond Li-ion: electrode materials for sodium- and magnesium-ion batteries

Review

Abstract

The need for economical and sustainable energy storage drives battery research today. While Li-ion batteries are the most mature technology, scalable electrochemical energy storage applications benefit from reductions in cost and improved safety. Sodium- and magnesium-ion batteries are two technologies that may prove to be viable alternatives. Both metals are cheaper and more abundant than Li, and have better safety characteristics, while divalent magnesium has the added bonus of passing twice as much charge per atom. On the other hand, both are still emerging fields of research with challenges to overcome. For example, electrodes incorporating Na+ are often pulverized under the repeated strain of shuttling the relatively large ion, while insertion and transport of Mg2+ is often kinetically slow, which stems from larger electrostatic forces. This review provides an overview of cathode and anode materials for sodium-ion batteries, and a comprehensive summary of research on cathodes for magnesium-ion batteries. In addition, several common experimental discrepancies in the literature are addressed, noting the additional constraints placed on magnesium electrochemistry. Lastly, promising strategies for future study are highlighted.

中文摘要

对于经济和可持续能源存储设备的需求促进了当今电池的研究. 锂离子电池是目前最成熟的技术, 但是电化学储能的应用 可通过降低成本和提高安全性进一步扩大. 钠和镁离子电池有可能成为两种可行的替代技术. 这两种金属比锂更便宜、储量更丰富, 并具有更好的安全特性, 而且二价镁还有一个附加优势, 即每个原子可以传输二倍的电荷. 另一方面, 钠和镁离子电池都还是新兴的研 究领域, 仍有很多挑战需要克服. 例如, 因较大的离子穿梭而造成的重复形变使结合Na+的电极容易粉末化, 而镁离子的插入和传输由 于较大的静电作用力普遍显示出较慢的动力学特性. 本文综述了钠离子电池阴极和阳极材料的概况, 并对镁离子电池阴极的研究进行 了全面总结. 此外, 本综述还讨论了文献中常见的一些实验差异, 指出了镁离子电化学研究的其他限制, 最后, 对未来研究提出了有价 值的观点和策略.

References

  1. 1.
    IEA. Fossil-fuel subsidies, in: World Energy Outlook 2014. Paris: IEA, 2014: 313Google Scholar
  2. 2.
    US Energy Information Administration, International Energy Outlook 2013 with Projections to 2040. Washington, DC, 2013. http:// www.eia.gov/forecasts/ieo/pdf/0484(2013).pdfGoogle Scholar
  3. 3.
    REN21. Policy Landscape, in: Renewables 2014 Global Status Report. Paris: REN21 Secretariat, 2014: 75–91. http://www.ren21.net/status-of-renewables/global-status-report/Google Scholar
  4. 4.
    Erickson EM, Ghanty C, Aurbach D. New horizons for conventional lithium ion battery technology. J Phys Chem Lett, 2014, 5: 3313–3324CrossRefGoogle Scholar
  5. 5.
    Wang Y, Liu B, Li Q, et al. Lithium and lithium ion batteries for applications in microelectronic devices: a review. J Power Sources, 2015, 286: 330–345CrossRefGoogle Scholar
  6. 6.
    Nykvist B, Nilsson M. Rapidly falling costs of battery packs for electric vehicles. Nat Clim Change, 2015, 5: 329–332CrossRefGoogle Scholar
  7. 7.
    Sathiya M, Abakumov AM, Foix D, et al. Origin of voltage decay in high-capacity layered oxide electrodes. Nat Mater, 2015, 14: 230–238CrossRefGoogle Scholar
  8. 8.
    Sakti A, Michalek JJ, Fuchs ERH, Whitacre JF. A techno-economic ana lysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification. J Power Sources, 2015, 273: 966–980CrossRefGoogle Scholar
  9. 9.
    Yoo HD, Markevich E, Salitra G, Sharon D, Aurbach D. On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Mater Today, 2014, 17: 110–121CrossRefGoogle Scholar
  10. 10.
    Augustyn V, Come J, Lowe MA, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater, 2013, 12: 518–522CrossRefGoogle Scholar
  11. 11.
    Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed, 2008, 47: 2930–2946CrossRefGoogle Scholar
  12. 12.
    Zhang WJ. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources, 2011, 196: 13–24CrossRefGoogle Scholar
  13. 13.
    Park CM, Kim JH, Kim H, Sohn HJ. Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev, 2010, 39: 3115–3141CrossRefGoogle Scholar
  14. 14.
    Cabana J, Monconduit L, Larcher D, Palacín MR. Beyond intercalation- based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater, 2010, 22: 170–192CrossRefGoogle Scholar
  15. 15.
    Armstrong AR, Bruce PG. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature, 1996, 381: 499–500CrossRefGoogle Scholar
  16. 16.
    Mizushima K, Jones PC, Wiseman PJ, Goodenough JB. LixCoO2 (0<x=1): a new cathode material for batteries of high energy density. Mater Res Bull, 1980, 15: 783–789CrossRefGoogle Scholar
  17. 17.
    Whittingham MS. Electrical energy storage and intercalation chemistry. Science, 1976, 192: 1126–1127CrossRefGoogle Scholar
  18. 18.
    Goodenough JBB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater, 2010, 22: 587–603CrossRefGoogle Scholar
  19. 19.
    Goodenough JBB, Park KSS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc, 2013, 165: 1167–1176CrossRefGoogle Scholar
  20. 20.
    Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci, 2011, 4: 3243–3262CrossRefGoogle Scholar
  21. 21.
    Guo YG, Hu JS, Wan LJ. Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater, 2008, 20: 2878–2887CrossRefGoogle Scholar
  22. 22.
    Scrosati B, Garche J. Lithium batteries: status, prospects and future. J Power Sources, 2010, 195: 2419–2430CrossRefGoogle Scholar
  23. 23.
    Palomares V, Serras P, Villaluenga I, et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci, 2012, 5: 5884–5901CrossRefGoogle Scholar
  24. 24.
    Kim SW, Seo DH, Ma X, Ceder G, Kang K. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater, 2012, 2: 710–721CrossRefGoogle Scholar
  25. 25.
    Ellis BL, Nazar LF. Sodium and sodium-ion energy storage batteries. Curr Opin Solid State Mater Sci, 2012, 16: 168–177CrossRefGoogle Scholar
  26. 26.
    Huie MM, Bock DC, Takeuchi ES, Marschilok AC, Takeuchi KJ. Cathode materials for magnesium and magnesium-ion based batteries. Coord Chem Rev, 2015, 287: 15–27CrossRefGoogle Scholar
  27. 27.
    Muldoon J, Bucur CB, Gregory T. Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem Rev, 2014, 114: 11683–11720CrossRefGoogle Scholar
  28. 28.
    Haynes WM. CRC Handbook of Chemi stry and Physics, 93rd Edition. Boca Raton: Taylor & Francis, 2012Google Scholar
  29. 29.
    Shannon RD. Revised effective ion ic radii and systematic studies of interatomie distances in halides and chaleogenides, Acta Cryst, 1976, 32; 751–767CrossRefGoogle Scholar
  30. 30.
    Slater MD, Kim D, Lee E, Johnson CS, Sodium-ion batteries. Adv Funct Mater, 2013, 23: 947–958CrossRefGoogle Scholar
  31. 31.
    Mohtadi R, Mizuno F. Magnesium batteries: current state of the art, issues and future perspectives. Beilstein J Nanotech, 2014. 5: 1291–311CrossRefGoogle Scholar
  32. 32.
    Shterenberg I, Salama M, Gofer Y, Levi E, Aurbach D. The challenge of developing rechargeable magnesium batteries. MRS Bull, 2014, 39: 453–460CrossRefGoogle Scholar
  33. 33.
    Islam MS, Fisher CAJ. Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem Soc Rev, 2014, 43: 185–204CrossRefGoogle Scholar
  34. 34.
    Haxel GB, Hedrick JB, Orris GJ. Rare earth elements: critical resources for high technology. Reston: US Geological Survey, 2002. http://pubs.usgs.gov/fs/2002/fs087-02Google Scholar
  35. 35.
    US Geological Survey. Mineral Commodity Summaries 2015, Reston: US Geological Survey, 2015.CrossRefGoogle Scholar
  36. 36.
    Zu CX, Li H. Thermodynamic analysis on energy densities of batteries. Energy Environ Sci, 2015, 41: 2614–2624Google Scholar
  37. 37.
    Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries. Chem Rev, 2014, 114: 11636–11682CrossRefGoogle Scholar
  38. 38.
    Mikkor M. Graphite aluminum- and silicon carbide-coated current collectors for sodium-sulfur cells. J Electrochem Soc, 1985, 132: 991–998CrossRefGoogle Scholar
  39. 39.
    Hudak N, Huber D. Nanostructured lithium-aluminum alloy electrodes for lithium-ion batteries. ECS Trans, 2011, 33: 1–13CrossRefGoogle Scholar
  40. 40.
    Ong SP, Chevrier VL, Hautier G, et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ Sci, 2011, 4: 3680–3688CrossRefGoogle Scholar
  41. 41.
    Kim Y, Park Y, Choi A, et al. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv Mater, 2013, 25: 3045–3049CrossRefGoogle Scholar
  42. 42.
    Xiong H, Slater MD, Balasubramanian M, Johnson CS, Rajh T. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J Phys Chem Lett, 2011, 2: 2560–2565CrossRefGoogle Scholar
  43. 43.
    Bernhart W, Kruger FJ. Technology & Market D rivers for Stationary and Automotive Battery Systems. Nice: Roland Berger Strategy Consultants, 2012 http://www.rechargebatteries.org/wp-content/ uploads/2013/04/Batteries-2012-Roland-Berger-Report1.pdfGoogle Scholar
  44. 44.
    Uchaker E, Zheng YZ, Li S, et al. Better than crystalline: amorphous vanadium oxide for sodium-ion batteries. J Mater Chem A, 2014, 2: 18208–18214CrossRefGoogle Scholar
  45. 45.
    Wei Q, Liu J, Feng W, et al. Hydrated vanadium pentoxide with superior sodium storage capacity. J Mater Chem A, 2015, 3: 8070–8075CrossRefGoogle Scholar
  46. 46.
    Wang Y, Takahashi K, Lee K, Cao G. Nanostructured vanadium oxide electrodes for enhanced lithium-ion intercalation. Adv Funct Mater, 2006, 16: 1133–1144CrossRefGoogle Scholar
  47. 47.
    Wang Y, Shang H, Chou T, Cao G. Effects of thermal annealing on the Li+ intercalation properties of V2O5·nH2O xerogel films. J Phys Chem B, 2005, 109: 11361–11366CrossRefGoogle Scholar
  48. 48.
    Nam KW, Kim S, Yang E, et al. Critical role of crystal water for a layered cathode material in sodium ion batteries. Chem Mater, 2015, 27: 3721–3725CrossRefGoogle Scholar
  49. 49.
    Yabuuchi N, Komaba S. Recent research progress on iron- and manganese- based positive electrode materials for rechargeable sodium batteries. Sci Technol Adv Mater, 2014, 15: 043501CrossRefGoogle Scholar
  50. 50.
    Mo Y, Ong SP, Ceder G. Insights into diffusion mechanisms in P2 layered oxide materials by first-principles calculations. Chem Mater, 2014, 26: 5208–5214CrossRefGoogle Scholar
  51. 51.
    Han SC, Lim H, Jeong J, et al. Ca-doped NaxCoO2 for improved cyclability in sodium ion batteries. J Power Sources, 2015, 277: 9–16CrossRefGoogle Scholar
  52. 52.
    Roger M, Morris DJP, Tennant DA, et al. Patterning of sodium ions and the control of electrons in sodium cobaltate. Nature, 2007, 445: 631–634CrossRefGoogle Scholar
  53. 53.
    Zandbergen HW, Foo M, Xu Q, Kumar V, Cava RJ. Sodium ion ordering in NaxCoO2: electron diffraction study. Phys Rev B, 2004, 70: 1–8CrossRefGoogle Scholar
  54. 54.
    Lei Y, Li X, Liu L, Ceder G. Synthesis and stoichiometry of different layered sodium cobalt oxides. Chem mater, 2014, 26: 5288–5296CrossRefGoogle Scholar
  55. 55.
    Shibata T, Fukuzumi Y, Kobayashi W, Moritomo Y. Fast discharge process of layered cobalt oxides due to high Na+ diffusion. Sci Rep, 2015, 5: 9006CrossRefGoogle Scholar
  56. 56.
    Hasa I, Buchholz D, Passerini S, Hassoun J. A comparative study of layered transition metal oxide cathodes for application in sodium- ion battery. ACS Appl Mater Interfaces, 2015, 7: 5206–5212CrossRefGoogle Scholar
  57. 57.
    Noh HJ, Youn S, Yoon CS, Sun YK. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sources, 2013, 233: 121–130CrossRefGoogle Scholar
  58. 58.
    Saadoune I, Delmas C. On the LixNi0.8Co0.2O2 System. J Solid State Chem, 1998, 136: 8–15CrossRefGoogle Scholar
  59. 59.
    Hwang JY, Oh SM, Myung ST, et al. Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries. Nat Commun, 2015, 6: 6865CrossRefGoogle Scholar
  60. 60.
    Shu GJ, Chou FC. Sodium-ion diffusion and ordering in singlecrystal P2-NaxCoO2. Phys Rev B, 2008, 78: 3–6CrossRefGoogle Scholar
  61. 61.
    Medarde M, Mena M, Gavilano JL, et al. 1D to 2D Na+ ion diffusion inherently linked to structural transitions in Na0.7CoO2. Phys Rev Lett, 2013, 110: 1–5CrossRefGoogle Scholar
  62. 62.
    Wang Y, Xiao R, Hu YS, Avdeev M, Chen L. P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries. Nat Commun, 2015, 6: 6954CrossRefGoogle Scholar
  63. 63.
    Casas-Cabanas M, Roddatis V, Saurel D, et al. Crystal chemistry of Na insertion/deinsertion in FePO4-NaFePO4. J Mater Chem, 2012, 22: 17421–17423CrossRefGoogle Scholar
  64. 64.
    Oh SM, Myung ST, Hassoun J, Scrosati B, Sun YK. Reversible NaFe-PO4 electrode for sodium secondary batteries. Electrochem Commun, 2012, 222: 149–152CrossRefGoogle Scholar
  65. 65.
    Kim J, Seo DH, Kim H, et al. Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries. Energy Environ Sci, 2015, 8: 540–545CrossRefGoogle Scholar
  66. 66.
    Lee YJ, Yi H, Kim WJ, et al. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes, Science, 2009, 324: 1051–1055Google Scholar
  67. 67.
    Kim SW, Ryu J, Park CB, Kang K. Carbon nanotube-amorphous FePO4 core-shell nanowires as cathode material for Li ion batteries. Chem Commun, 2010, 46: 7409–7411CrossRefGoogle Scholar
  68. 68.
    Ha KH, Woo SH, Mok D, et al. Na4-aM2+α/2(P2O7)2 (2/3 ≤ α ≤ 7/8, M = Fe, Fe0.5Mn0.5, Mn): a promising sodium ion cathode for Na-ion batteries. Adv Energy Mater, 2013, 3: 770–776CrossRefGoogle Scholar
  69. 69.
    Kundu D, Tripathi R, Popov G, Makahnouk WRM, Nazar LF. Synthesis, structure, and Na-ion migration in Na4NiP2O7F2: a prospective high voltage positive electrode material for the Na-ion batter. Chem Mater, 2015, 27: 885–891CrossRefGoogle Scholar
  70. 70.
    Barpanda P, Oyama G, Nishimura SI, Chung SC, Yamada A. A 3.8-V earth-abundant sodium battery electrode. Nat Commun, 2014, 5: 4358CrossRefGoogle Scholar
  71. 71.
    Saha P, Jampani PH, Datta MK, et al. Electrochemical performance of chemically and solid state-derived Chevrel phase Mo6T8(T = S, Se) positive electrodes for sodium-ion batteries. J Phys Chem C, 2015, 119: 5771–5782CrossRefGoogle Scholar
  72. 72.
    Cao Y, Xiao L, Sushko ML, et al. Sodiumion insertion in hollow carbon nanowires for battery applications. Nano Lett, 2012, 12: 3783–3787CrossRefGoogle Scholar
  73. 73.
    Stevens DA, Dahn JR. The mechanisms of lithium and sodium insertion in carbon materials. J Electrochem Soc, 2001, 148: A803–A811CrossRefGoogle Scholar
  74. 74.
    Datta D, Li J, Shenoy VB. Defective graphene as promising anode material for Na-ion battery and Ca-ion batteries. ACS Appl Mater Interfaces, 2014, 6: 1788–1795CrossRefGoogle Scholar
  75. 75.
    Zhou LJ, Hou ZF, Wu LM, Zhang YF. First-principles studies of lithium adsorption and diffusion on graphene with grain boundaries. J Phys Chem C, 2014, 118: 28055–28062CrossRefGoogle Scholar
  76. 76.
    Datta D, Li J, Koratkar N, Shenoy VB. Enhanced lithiation in defective graphene. Carbon, 2014, 80: 305–310CrossRefGoogle Scholar
  77. 77.
    Pramudita JC, Pontiroli D, Magnani G, et al. Graphene and selected derivatives as negative electrodes in sodium- and lithium-ion batteries. Chem Electro Chem, 2015, 2: 600–610Google Scholar
  78. 78.
    Wen Y, He K, Zhu Y, et al. Expanded graphite as superior anode for sodium-ion batteries. Nat Commun, 2014, 5: 4033Google Scholar
  79. 79.
    Tsai P, Chung SC, Lin S, Yamada A. Ab initio study of sodium intercalation into disordered carbon. J Mater Chem A, 2015, 3: 9763–9768CrossRefGoogle Scholar
  80. 80.
    Malyi OI, Sopiha K, Kulish VV, et al. A computational study of Na behavior on graphene. Appl Surf Sci, 2015, 333: 235–243CrossRefGoogle Scholar
  81. 81.
    Xu J, Wang M, Wickramaratne NP, et al. High-performance sodium ion batteries based on three-dimensional anode from nitrogen- doped graphene foams. Adv Mater, 2015, 27: 2042–2048CrossRefGoogle Scholar
  82. 82.
    Kim KT, Ali G, Chung KY, et al. Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. Nano Lett, 2014, 14: 416–422CrossRefGoogle Scholar
  83. 83.
    Wu L, Bresser D, Buchholz D, et al. Unfolding the mechani sm of sodium insertion in anatase TiO2 nanoparticles. Adv Energy Mater, 2015, doi: 10.1002/aenm.201401142Google Scholar
  84. 84.
    Cha HA, Jeong HM, Kang JK. Nitrogen-doped open pore channeled graphene facilitating electrochemical performance of TiO2 nanoparticles as an anode material for sodium ion batteries. J Mater Chem A, 2014, 2: 5182–5186CrossRefGoogle Scholar
  85. 85.
    Gonzalez JR, Alcantara R, Nacimiento F, Ortiz GF, Tirado JL. Microstructure of the epitaxial film of anatase nanotubes obtained at high voltage and the mechanism of its electrochemical reaction with sodium. CrystEngComm, 2014, 16: 4602–4609CrossRefGoogle Scholar
  86. 86.
    Legrain F, Malyi O, Manzhos S. Insertion energetics of lithium, sodium, and magnesium in crystalline and amorphous titanium dioxide: a comparative first-principles study. J Power Sources, 2015, 278: 197–202CrossRefGoogle Scholar
  87. 87.
    Usui H, Yoshioka S, Wasada K, Shimizu M, Sakaguchi H. Nb-doped rutile TiO2: a potential anode material for Na-ion battery. ACS Appl Mater Interfaces, 2015, 7: 6567–6573CrossRefGoogle Scholar
  88. 88.
    Darwiche A, Toiron M, Sougrati MT, et al. Performance and mechanism of FeSb2 as negative electrode for Na-ion batteries. J Power Sources, 2015, 280: 588–592CrossRefGoogle Scholar
  89. 89.
    Wu D, Li X, Xu B, et al. NaTiO2: a layered anode material for sodium- ion batteries. Energy Environ Sci, 2015, 8: 195–202CrossRefGoogle Scholar
  90. 90.
    Chen C, Wen Y, Hu X, et al. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat Commun, 2015, 6: 6929CrossRefGoogle Scholar
  91. 91.
    Sun Y, Zhao L, Pan H, et al. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat Commun, 2013, 4: 1870CrossRefGoogle Scholar
  92. 92.
    Wang Y, Yu X, Xu S, et al. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nat Commun, 2013, 4: 2365Google Scholar
  93. 93.
    Wang Y, Liu J, Lee B, et al. Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries. Nat Commun, 2015, 6: 6401CrossRefGoogle Scholar
  94. 94.
    Qian J, Wu X, Cao Y, Ai X, Yang H. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew Chem Int Ed, 2013, 52: 4633–4636CrossRefGoogle Scholar
  95. 95.
    Hembram KPSS, Jung H, Yeo BC, et al. Unraveling the atomistic sodiation mechanism of black phosphorus for sodium ion batteries by first-principles calculations. J Phys Chem C, 2015, 119: 15041–15046CrossRefGoogle Scholar
  96. 96.
    Wang C, Xu Y, Fang Y, et al. Extended p-conjugated system for fastcharge and-discharge sodium-ion batteries. J Am Chem Soc, 2015, 137: 3124–3130CrossRefGoogle Scholar
  97. 97.
    Gregory TD, Hoffman RJ, Winterton RC. Nonaqueous electrochemistry of magnesium. J Electrochem Soc, 1990, 137: 775–780CrossRefGoogle Scholar
  98. 98.
    Aurbach D, Lu Z, Schechter A, et al. Prototype systems for rechargeable magnesium batteries. Nature, 2000, 407: 724–727CrossRefGoogle Scholar
  99. 99.
    Novák P, Imhof R, Haas O. Magnesium insertion electrodes for rechargeable nonaqueous batteries—a competitive alternative to lithium? Electrochim Acta, 1999, 45: 351–367CrossRefGoogle Scholar
  100. 100.
    Aurbach D, Weissman I, Gofer Y, Levi E. Nonaqueous magnesium electrochemistry and its application in secondary batteries. Chem Rec, 2003, 3: 61–73CrossRefGoogle Scholar
  101. 101.
    Yuan H, Jiao L, Cao J, et al. Development of magnesium-insertion positive electrode for rechargeable magnesium batteries. J Mater Sci Technol, 2004, 20: 41–45Google Scholar
  102. 102.
    Levi E, Levi MD, Chasid O, Aurbach D. A review on the problems of the solid state ions diffusion in cathodes for rechargeable Mg batteries. J Electroceramics, 2009, 22: 13–19CrossRefGoogle Scholar
  103. 103.
    Levi E, Gofer Y, Aurbach D. On the way to rechargeable Mg batteries: the challenge of new cathode materials. Chem Mater, 2010, 22: 860–868CrossRefGoogle Scholar
  104. 104.
    Muldoon J, Bucur CB, Oliver AG, et al. Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ Sci, 2012, 5: 5941–5950CrossRefGoogle Scholar
  105. 105.
    Yoo HD, Shterenberg I, Gofer Y, et al. Mg rechargeable batte ries: an on-going challenge. Energy Environ Sci, 2013, 6: 2265–2279CrossRefGoogle Scholar
  106. 106.
    Saha P, Datta MK, Velikokhatnyi OI, et al. Rechargeable magnesium battery: current status and key challenges for the future. Prog Mater Sci, 2014, 66: 1–86CrossRefGoogle Scholar
  107. 107.
    Tutusaus O, Mohtadi R. Paving the way towards highly stable and practical electrolytes for rechargeable magnesium batteries. ChemElectroChem, 2015, 2: 51–57CrossRefGoogle Scholar
  108. 108.
    Park MS, Kim JG, Kim YJ, Choi NS, Kim JS. Recent advances in rechargeable magnesium battery technology: a review of the field’s current status and prospects. Isr J Chem, 2015, 55: 570–585CrossRefGoogle Scholar
  109. 109.
    Lu Z, Schechter A, Moshkovich M, Aurbach D. On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions. J Electroanal Chem, 1999, 466: 203–217CrossRefGoogle Scholar
  110. 110.
    Muldoon J, Bucur CB, Oliver AG, et al. Corrosion of magnesium electrolytes: chlorides–the culprit. Energy Environ Sci, 2013, 6: 482–487CrossRefGoogle Scholar
  111. 111.
    Lv D, Xu T, Saha P, et al. A scientific study of current collectors for Mg batteries in Mg(AlCl2EtBu)2/THF electrolyte. J Electrochem Soc, 2012, 160: A351–A355CrossRefGoogle Scholar
  112. 112.
    Nelson EG, Brody SI, Kampf JW, Bartlett BM. A magnesium tetraphenylaluminate battery electrolyte exhibits a wide electrochemical potential window and reduces stainless steel corrosion. J Mater Chem A, 2014, 2: 18194–18198CrossRefGoogle Scholar
  113. 113.
    Tutusaus O, Mohtadi R, Arthur TS, et al. An efficient halogen-free electrolyte for use in rechargeable magnesium batteries. Angew Chem Int Ed, 2015, 54: 7900–7904CrossRefGoogle Scholar
  114. 114.
    Guo Y, Zhang F, Yang J, et al. Boron-based electrolyte solutions with wide electrochemical windows for rechargeable magnesium batteries. Energy Environ Sci, 2012, 5: 9100–9106CrossRefGoogle Scholar
  115. 115.
    Amatucci GG, Badway F, Singhal A, et al. Investigation of yttrium and polyvalent ion intercalation into nanocrystalline vanadium oxide. J Electrochem Soc, 2001, 148: A940–A950CrossRefGoogle Scholar
  116. 116.
    Novák P. Electrochemical insertion of magnesium in metal oxides and sulfides from aprotic electrolytes. J Electrochem Soc, 1993, 140: 140–144CrossRefGoogle Scholar
  117. 117.
    Levi E, Gershinsky G, Aurbach D, Isnard O, Ceder G. New insight on the unusually high ionic mobility in Chevrel phases. Chem Mater, 2009, 21: 1390–1399CrossRefGoogle Scholar
  118. 118.
    Aurbach D, Gofer Y, Lu Z, et al. A short review on the comparison between Li battery systems and rechargeable magnesium battery technology. J Power Sources, 2001, 97-98: 28–32CrossRefGoogle Scholar
  119. 119.
    Kapustinskii AF. Lattice energy of ionic crystals. Q Rev Chem Soc, 1956, 10: 283–294CrossRefGoogle Scholar
  120. 120.
    Levi MD, Lancry E, Gizbar H, et al. Kinetic and thermodynamic studies of Mg2+ and Li+ ion insertion into the Mo6S8 Chevrel phase. J Electrochem Soc, 2004, 151: A1044–A1051CrossRefGoogle Scholar
  121. 121.
    Tao ZL, Xu LN, Gou XL, Chen J, Yuan HT. TiS2 nanotubes as the cathode materials of Mg-ion batteries. Chem Commun, 2004: 2080–2081Google Scholar
  122. 122.
    Ling C, Banerjee D, Song W, Zhang M, Matsui M. First-principles study of the magnesiation of olivines: redox reaction mechanism, electrochemical and thermodynamic properties. J Mater Chem, 2012, 22: 13517–13523CrossRefGoogle Scholar
  123. 123.
    Liu M, Rong Z, Malik R, et al. Spinel compounds as multivalent battery cathodes: a systematic evaluation based on ab initio calculations. Energy Environ Sci, 2014, 8: 964–974CrossRefGoogle Scholar
  124. 124.
    Aurbach D, Cohen Y, Moshkovich M. The study of reversible magnesium deposition by in situ scanning tunneling microscopy. Electrochem Solid State Lett, 2001, 4: A113–A116CrossRefGoogle Scholar
  125. 125.
    Matsui M. Study on electrochemically deposited Mg metal. J Power Sources, 2011, 196: 7048–7055CrossRefGoogle Scholar
  126. 126.
    Ling C, Banerjee D, Matsui M. Study of the electrochemical deposition of Mg in the atomic level: why it prefers the non-dendritic morphology. Electrochim Acta, 2012, 76: 270–274CrossRefGoogle Scholar
  127. 127.
    Levi E, Gofer Y, Vestfreed Y, Lancry E, Aurbach D. Cu2Mo6S8 Chevrel phase, a promising cathode material for new rechargeable Mg batteries: a mechanically induced chemical reaction. Chem Mater, 2002, 14: 2767–2773CrossRefGoogle Scholar
  128. 128.
    Besenhard JO, Winter M. Advances in battery technology: rechargeable magnesium batteries and novel negative-electrode materials for lithium ion batteries. ChemPhysChem, 2002, 3: 155–159CrossRefGoogle Scholar
  129. 129.
    Kganyago KR, Ngoepe PE, Catlow CRA. Voltage profile, structural prediction, and electronic calculations for MgxMo6S8. Phys Rev B, 2003, 67: 1–10CrossRefGoogle Scholar
  130. 130.
    Levi MD, Gizbar H, Lancry E, et al. A comparative study of Mg2+ and Li+ ion insertions into the Mo6S8 Chevrel phase using electrochemical impedance spectroscopy. J Electroanal Chem, 2004, 569: 211–223CrossRefGoogle Scholar
  131. 131.
    Lancry E, Levi E, Gofer Y, et al. Leaching chemistry and the performance of the Mo6S8 cathodes in rechargeable Mg batteries. Chem Mater, 2004, 16: 2832–2838CrossRefGoogle Scholar
  132. 132.
    Lancry E, Levi E, Gofer Y, Levi MD, Aurbach D. The effect of milling on the performance of a Mo6S8 Chevrel phase as a cathode material for rechargeable Mg batteries. J Solid State Electrochem, 2005, 9: 259–266CrossRefGoogle Scholar
  133. 133.
    Levi MD, Aurbach D. A comparison between intercalation of Li and Mg ions into the model Chevrel phase compound (MxMo6S8): impedance spectroscopic studies. J Power Sources, 2005, 146: 349–354CrossRefGoogle Scholar
  134. 134.
    Levi MD, Lancri E, Levi E, et al. The effect of the anionic framework of Mo6X8 Chevrel Phase (X = S, Se) on the thermodynamics and the kinetics of the electrochemical insertion of Mg2+ ions. Solid State Ionics, 2005, 176: 1695–1699CrossRefGoogle Scholar
  135. 135.
    Levi E, Lancry E, Gofer Y, Aurbach D. The crystal structure of the inorganic surface films formed on Mg and Li intercalation compounds and the electrode performance. J Solid State Electrochem, 2006, 10: 176–184CrossRefGoogle Scholar
  136. 136.
    Lancry E, Levi E, Mitelman A, Malovany S, Aurbach D. Molten salt synthesis (MSS) of Cu2Mo6S8—new way for large-scale production of Chevrel phases. J Solid State Chem, 2006, 179: 1879–1882CrossRefGoogle Scholar
  137. 137.
    Levi E, Lancry E, Mitelman A, et al. Phase diagram of Mg insertion into Chevrel phases, MgxMo6T8 (T = S, Se). 2. The crystal structure of triclinic MgMo6Se8. Chem Mater, 2006, 18: 3705–3714CrossRefGoogle Scholar
  138. 138.
    Levi E, Lancry E, Mitelman A, et al. Phase diagram of Mg insertion into Chevrel phases, MgxMo6T8 (T = S, Se). 1. Crystal structure of the sulfides. Chem Mater, 2006, 18: 5492–5503CrossRefGoogle Scholar
  139. 139.
    Levi E, Mitelman A, Aurbach D, Isnard O. On the mechanism of triclinic distortion in Chevrel phase as probed by in-situ neutron diffraction. Inorg Chem, 2007, 46: 7528–7535CrossRefGoogle Scholar
  140. 140.
    Mitelman A, Levi E, Lancry E, Aurbach D. On the Mg trapping mechanism in electrodes comprising Chevrel phases. ECS Trans, 2007, 3: 109–115CrossRefGoogle Scholar
  141. 141.
    Mitelman A, Levi MD, Lancry E, Levi E, Aurbach D. New cathode materials for rechargeable Mg batteries: fast Mg ion transport and reversible copper extrusion in CuyMo6S8 compounds. Chem Commun, 2007: 4212–4214Google Scholar
  142. 142.
    Levi E, Mitelman A, Aurbach D, Brunelli M. Structural mechanism of the phase transitions in the Mg-Cu-Mo6S8 system probed by ex situ synchrotron X-ray diffraction. Chem Mater, 2007, 19: 5131–5142CrossRefGoogle Scholar
  143. 143.
    Aurbach D, Suresh GS, Levi E, et al. Progress in rechargea ble mag nesium battery technology. Adv Mater, 2007, 19: 4260–4267CrossRefGoogle Scholar
  144. 144.
    Suresh GS, Levi MD, Aurbach D, Effect of chalcogen substitution in mixed Mo6S8-nSen (n = 0, 1, 2) Chevrel phases on the thermodynamics and kinetics of reversible Mg ions insertion. Electrochim Acta, 2008, 53: 3889–3896CrossRefGoogle Scholar
  145. 145.
    Levi E, Mitelman A, Isnard O, Brunelli M, Aurbach D. Phase diagram of Mg insertion into Chevrel phases, MgxMo6T8 (T = S, Se). 3. The crystal structure of triclinic Mg2Mo6Se8. Inorg Chem, 2008, 47: 1975–1983CrossRefGoogle Scholar
  146. 146.
    Woan KV, Scheffler RH, Bell NS, Sigmund WM. Electrospinning of nanofiber Chevrel phase materials. J Mater Chem, 2011, 21: 8537–8539CrossRefGoogle Scholar
  147. 147.
    Gershinsky G, Haik O, Salitra G, et al. Ultra fast elemental synthesis of high yield copper Chevrel phase with high electrochemical performance. J Solid State Chem, 2012, 188: 50–58CrossRefGoogle Scholar
  148. 148.
    Ryu A, Park M, Cho W, Kim JS, Kim Y. Size-controlled Chevrel Mo6S8 as cathode material for Mg rechargeable battery. Bull Korean Chem Soc, 2013, 34: 3033–3038CrossRefGoogle Scholar
  149. 149.
    Ichitsubo T, Yagi S, Nakamura R, et al. A new aspect of Chevrel compounds as a positive electrode for magnesium battery. J Mater Chem A, 2014, 2: 14858–14866CrossRefGoogle Scholar
  150. 150.
    Saha P, Jampani PH, Datta MK, et al. A convenient approach to Mo6S8 Chevrel phase cathode for rechargeable magnesium battery. J Electrochem Soc, 2014, 161: A593–A598CrossRefGoogle Scholar
  151. 151.
    Taniguchi K, Yoshino T, Gu Y, Katsura Y, Takagi H. Reversible electrochemical insertion/extraction of Mg and Li Ions for orthorhombic Mo9Se11 with cluster structure. J Electrochem Soc, 2014, 162: 198–202CrossRefGoogle Scholar
  152. 152.
    Kaewmaraya T, Ramzan M, Osorio-Guillén JM, Ahuja R. Electronic structure and ionic diffusion of green battery cathode material: Mg2Mo6S8. Solid State Ionics, 2014, 261: 17–20CrossRefGoogle Scholar
  153. 153.
    Woo SG, Yoo JY, Cho W, et al. Copper incorporated CuxMo6S8 (x = 1) Chevrel-phase cathode materials synthesized by chemical intercalation process for rechargeable magnesium batteries. RSC Adv, 2014, 4: 59048–59055CrossRefGoogle Scholar
  154. 154.
    Cho W, Moon B, Woo SG, et al. Size effect of Chevrel MgxMo6S8 as cathode material for magnesium rechargeable batteries. Bull Korean Chem Soc, 2015, 36: 1209–1214CrossRefGoogle Scholar
  155. 155.
    Choi SH, Kim JS, Woo SG, et al. Role of Cu in Mo6S8 and Cu mixture cathodes for magnesium ion batteries. ACS Appl Mater Interfaces, 2015, 7: 7016–7024CrossRefGoogle Scholar
  156. 156.
    Doe RE, Han R, Hwang J, et al. Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries. Chem Commun, 2014, 50: 243–245CrossRefGoogle Scholar
  157. 157.
    Shao Y, Liu T, Li G, et al. Coordination chemistry in magnesium battery electrolytes: how ligands affect their performance. Sci Rep, 2013, 3: 3130Google Scholar
  158. 158.
    Mohtadi R, Matsui M, Arthur TS, Hwang SJ. Magnesium borohydride: from hydrogen storage to magnesium battery. Angew Chem Int Ed, 2012, 51: 9780–9783CrossRefGoogle Scholar
  159. 159.
    Zhu J, Guo Y, Yang J, et al. Halogen-free boron based electrolyte solution for rechargeable magnesium batteries. J Power Sources, 2014, 248: 690–694CrossRefGoogle Scholar
  160. 160.
    Amir N, Vestfrid Y, Chusid O, Gofer Y, Aurbach D. Progress in nonaqueous magnesium electrochemistry. J Power Sources, 2007, 174: 1234–1240CrossRefGoogle Scholar
  161. 161.
    Liang Y, Feng R, Yang S, et al. Rechargeable Mg batteries with graphene-like MoS2 cathode and ultrasmall Mg nanoparticle anode. Adv Mater, 2011, 23: 640–643CrossRefGoogle Scholar
  162. 162.
    Li XL, Li YD. MoS2 nanostructures: synthesis and electrochemical Mg2+ intercalation. J Phys Chem B, 2004, 108: 13893–13900CrossRefGoogle Scholar
  163. 163.
    Liu Y, Jiao L, Wu Q, et al. Sandwich-structured graphene-like MoS2/C microspheres for rechargeable Mg batteries. J Mater Chem A, 2013, 1: 5822–5826CrossRefGoogle Scholar
  164. 164.
    Liu Y, Jiao L, Wu Q, et al. Synthesis of rGO-supported layered MoS2 for high-performance rechargeable Mg batteries. Nanoscale, 2013, 5: 9562–9567CrossRefGoogle Scholar
  165. 165.
    Yang S, Li D, Zhang T, Tao Z, Chen J. First-principles study of zigzag MoS2 nanoribbon as a promising cathode material for rechargeable Mg batteries. J Phys Chem C, 2012, 116: 1307–1312CrossRefGoogle Scholar
  166. 166.
    Liang Y, Yoo HD, Li Y, et al. Interlayer-expanded m olybdenum disulfide nanocomposites for electrochemical magnesium storage. Nano Lett, 2015, 15: 2194–2202CrossRefGoogle Scholar
  167. 167.
    Hu Z, Wang L, Zhang K, et al. MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew Chem Int Ed, 2014, 53: 12794–12798CrossRefGoogle Scholar
  168. 168.
    Pereira AO, Miranda CR. First-principles inve stigation of transition metal dichalcogenide nanotubes for Li and Mg ion battery applications. J Phys Chem C, 2015, 119: 4302–4311CrossRefGoogle Scholar
  169. 169.
    Bruce PG, Krok F, Nowinski J, Gibson VC, Tavakkoli K. Chemical intercalation of magnesium into solid hosts. J Mater Chem, 1991, 1: 705–706CrossRefGoogle Scholar
  170. 170.
    Bruce PG, Krok F, Lightfoot P, Nowinski JL, Gibson VC. Multivalent cation intercalation. Solid State Ionics, 1992, 53-56: 351–355CrossRefGoogle Scholar
  171. 171.
    Emly A, Van der Ven A. Mg intercalation in l ayered and spinel host crystal structures for Mg batteries. Inorg Chem, 2015, 54: 4394–4402CrossRefGoogle Scholar
  172. 172.
    Gu Y, Katsura Y, Yoshino T, Takagi H, Taniguchi K. Rechargeable magnesium-ion battery based on a TiSe2-cathode with d-p orbital hybridized electronic structure. Sci Rep, 2015, 5: 12486CrossRefGoogle Scholar
  173. 173.
    Liu B, Luo T, Mu G, et al. Rechargeable Mg-ion batteries based on WSe2 nanowire cathodes, ACS Nano, 2013, 7: 8051–8058CrossRefGoogle Scholar
  174. 174.
    Tarascon JM, Wang E, Shokoohi FK, McKinnon WR, Colson S. The spinel phase of LiMn2O4 as a cathode in secondary lithium cells. J Electrochem Soc, 1991, 138: 2859–2864CrossRefGoogle Scholar
  175. 175.
    Yuan W, Gunter JR. Insertion of bivalent cations into monoclinic NbS3 prepared under high pressure and their secondary batteries. Solid State Ionics, 1995, 76: 253–258CrossRefGoogle Scholar
  176. 176.
    He D, Wu D, Gao J, et al. Flower-like CoS with nanostructures as a new cathode-active material for rechargeable magnesium batteries. J Power Sources, 2015, 294: 643–649CrossRefGoogle Scholar
  177. 177.
    Yu W, Wang D, Zhu B, Zhou G. Intercalation of Mg in V2O5. Solid State Commun, 1987, 63: 1043–1044CrossRefGoogle Scholar
  178. 178.
    Yu W, Wang D, Zhu B, Wang S, Xue L. Insertion of bi-valence cations Mg2+ and Zn2+ into V2O5. Solid State Commun, 1987, 61: 271–273CrossRefGoogle Scholar
  179. 179.
    Pereira-Ramos JP, Messina R, Perichon J. Electrochemical formation of a magnesium vanadium bronze MgxV2O5 in sulfone-based electrolytes at 150°C. J Electroanal Chem Interfacial Electrochem, 1987, 218: 241–249CrossRefGoogle Scholar
  180. 180.
    Novák P, Scheifele W, Joho F, Haas O. Electrochemical insertion of magnesium into hydrated vanadium bronzes. J Electrochem Soc, 1995, 142: 2544–2550CrossRefGoogle Scholar
  181. 181.
    Novák P, Scheifele W, Haas O. Magnesium insertion batteries—an alternative to lithium? J Power Sources, 1995, 54: 479–482CrossRefGoogle Scholar
  182. 182.
    Shklover V, Haibach T, Ried F, Nesper R, Novák P. Crystal structure of the product of Mg2+ insertion into V2O5 single crystals. J Solid State Chem, 1996, 123: 317–323CrossRefGoogle Scholar
  183. 183.
    Le DB, Passerini S, Coustier F, et al. Intercalation of polyvalent cations into V2O5 aerogels. Chem Mater, 1998, 4756: 682–684CrossRefGoogle Scholar
  184. 184.
    Morita M, Yoshimoto N, Yakushiji S, Ishikawa M. Rechargeable magnesiu m batteries using a novel polymeric solid electrolyte. Electrochem Solid State Lett, 2001, 4: A177–A179CrossRefGoogle Scholar
  185. 185.
    Imamura D, Miyayama M, Hibino M, Kudo T. Mg intercalation prop erties into V2O5 gel/carbon composites under high-rate condition. J Electrochem Soc, 2003, 150: A753–A758CrossRefGoogle Scholar
  186. 186.
    Imamura D, Masaru M. Characterization of magnesium-intercalated V2O5/carbon composites. Solid State Ionics, 2003, 161: 173–180CrossRefGoogle Scholar
  187. 187.
    Yoshimoto N, Yakushiji S, Ishikawa M, Morita M. Rechargeable magnesium batteries with polymeric gel electrolytes containing magnesium salts. Electrochim Acta, 2003, 48: 2317–2322CrossRefGoogle Scholar
  188. 188.
    Yu L, Zhang X. Electrochemical insertion of magnesium ions into V2O5 from aprotic electrolytes with varied water content. J Colloid Interface Sci, 2004, 278: 160–165CrossRefGoogle Scholar
  189. 189.
    Tang PE, Sakamoto JS, Baudrin E, Dunn B. V2O5 aerogel as a versatile host for metal ions. J Non Cryst Solids, 2004, 350: 67–72CrossRefGoogle Scholar
  190. 190.
    Oh JS, Ko JM, Kim DW. Preparation and characterization of gel polymer electrolytes for solid state magnesium batteries. Electrochim Acta, 2004, 50: 903–906CrossRefGoogle Scholar
  191. 191.
    Bervas M, Klein LC, Amatucci GG. Vanadium oxide–propylene carbonate composite as a host for the intercalation of polyvalent cations. Solid State Ionics, 2005, 176: 2735–2747CrossRefGoogle Scholar
  192. 192.
    Jiao L, Yuan H, Wang Y, Cao J, Wang Y. Mg intercalation properties into open-ended vanadium oxide nanotubes. Electrochem Commun, 2005, 7: 431–436CrossRefGoogle Scholar
  193. 193.
    Jiao L, Yuan H, Si Y, et al. Electrochemical insertion of magnesium in open-ended vanadium oxide nanotubes. J Power Sources, 2006, 156: 673–676CrossRefGoogle Scholar
  194. 194.
    Jiao LF, Yuan HT, Si YC, Wang YJ, Wang YM. Synthesis of Cu0.1- doped vanadium oxide nanotubes and their application as cathode materials for rechargeable magnesium batteries. Electrochem Commun, 2006, 8: 1041–1044CrossRefGoogle Scholar
  195. 195.
    Hu T, Lin JB, Kong F, Mao JG. Mg7V4O16(OH)2(H2O): a magnesium vanadate with a novel 3D magnesium oxide open framework. Inorg Chem Commun, 2008, 11: 1012–1014CrossRefGoogle Scholar
  196. 196.
    Stojkovic I, Cvjeticanin N, Markovic S, Mitric M, Mentus S. Electrochemical behav iour of V2O5 xerogel and V2O5 xerogel/C composite in an aqueous LiNO3 and Mg(NO3)2 solutions. Acta Phys Polonica A, 2010, 117: 837–840Google Scholar
  197. 197.
    Pandey GP, Agrawal RC, Hashmi SA. Performance studies on composite gel polymer electrolytes for rechargeable magnesium battery application. J Phys Chem Solids, 2011, 72: 1408–1413CrossRefGoogle Scholar
  198. 198.
    Sun JZ. Study of MgV2O6 as cathode material for secondary magnesium batteries. Asian J Chem, 2011, 23: 1399–1400Google Scholar
  199. 199.
    Wang Z, Su Q, Deng H. Single-layered V2O5 a promising cathode material for rechargeable Li and Mg ion batteries: an ab initio study. Phys Chem Chem Phys, 2013, 15: 8705–8709CrossRefGoogle Scholar
  200. 200.
    Inamoto M, Kurihara H, Yajima T. Vanadium pentoxide-based composite synthesized using microwave water plasma for cathode material in rechargeable magnesium batteries. Materials, 2013, 6: 4514–4522CrossRefGoogle Scholar
  201. 201.
    Gershinsky G, Yoo HD, Gofer Y, Aurbach D. Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides: V2O5 and MoO3. Langmuir, 2013, 29: 10964–10972CrossRefGoogle Scholar
  202. 202.
    Kim RH, Kim JS, Kim HJ, et al. Highly reduced VOx nanotube cathode materials with ultra-high capacity for magnesium ion batteries. J Mater Chem A, 2014, 2: 20636–20641CrossRefGoogle Scholar
  203. 203.
    Carrasco J. Role of van der Waals forces in thermodynamics and kinetics of layered transition metal oxide electrodes: alkali and alkaline-earth ion insertion into V2O5. J Phys Chem C, 2014, 118: 19599–19607CrossRefGoogle Scholar
  204. 204.
    Lee SH, DiLeo RA, Marschilok AC, Takeuchi KJ, Takeuchi ES. Sol gel based synthesis and electrochemistry of magnesium vanadium oxide: a promising cathode material for secondary magnesium ion batteries. ECS Electrochem Lett, 2014, 3: A87–A90CrossRefGoogle Scholar
  205. 205.
    Zhou B, Shi H, Cao R, Zhang X, Jiang Z. Theoretical study on the initial stage of magnesium battery based on V2O5 cathode. Phys Chem Chem Phys, 2014, 16: 18578–18585CrossRefGoogle Scholar
  206. 206.
    Wang H, Senguttuvan P, Proffit DL, et al. Formation of MgO during chemical magnesiation of Mg-ion battery materials. ECS Electrochem Lett, 2015, 4: A90–A93CrossRefGoogle Scholar
  207. 207.
    Sai Gautam G, Canepa P, Abdellahi A, et al. The intercalation phase diagram of Mg in V2O5 from first principles. Chem Mater, 2015, 27: 3733–3742CrossRefGoogle Scholar
  208. 208.
    Okoshi M, Yamada Y, Yamada A, Nakai H. Theoretical analysis on de-solvation of lithium, sodium, and magnesium cations to organic electrolyte solvents. J Electrochem Soc, 2013, 160: A2160–A2165CrossRefGoogle Scholar
  209. 209.
    Le DB, Passerini S, Guo J, et al. High surface area V2O5 aerogel intercalation electrodes. J Electrochem Soc, 1996, 143: 2099–2104CrossRefGoogle Scholar
  210. 210.
    Malik R, Zhou F, Ceder G. Kinetics of non-equilibrium lithium incorporation in LiFePO4. Nat Mater, 2011, 10: 587–590CrossRefGoogle Scholar
  211. 211.
    Kim C, Phillips PJ, Key B, et al. Direct observation of reversible magnesium ion intercalation into a spinel oxide host. Adv Mater, 2015, 27: 3377–3384CrossRefGoogle Scholar
  212. 212.
    Sánchez L, Pereira-Ramos JP. Electrochemical insertion of magnesium in a mixed manganese-cobalt oxide. J Mater Chem, 1997, 7: 471–473CrossRefGoogle Scholar
  213. 213.
    Kumar GG, Munichandraiah N. Solid-state Mg/MnO2 cell employing a gel polymer electrolyte of magnesium triflate. J Power Sources, 2000, 91: 157–160CrossRefGoogle Scholar
  214. 214.
    Kumagai N, Komaba S, Sakai H, Kumagai N. Preparation of todorokite-type manganese-based oxide and its application as lithium and magnesium rechargeable battery cathode. J Power Sources, 2001, 97-98: 515–517CrossRefGoogle Scholar
  215. 215.
    Kumar GG, Munichandraiah N. Solid-state rechargeable magnesium cell with poly(vinylidenefluoride)-magnesium triflate gel polymer electrolyte. J Power Sources, 2001, 102: 46–54CrossRefGoogle Scholar
  216. 216.
    Kumar G, Munichandraiah N. Poly(methylmethacrylate)-magnesium triflate gel polymer electrolyte for solid state magnesium battery application. Electrochim Acta, 2002, 47: 1013–1022CrossRefGoogle Scholar
  217. 217.
    Kurihara H, Yajima T, Suzuki S. Preparation of cathode active material for rechargeable magnesium battery by atmospheric pressure microwave discharge using carbon felt pieces. Chem Lett, 2008, 37: 376–377CrossRefGoogle Scholar
  218. 218.
    Sheha E, El-Mansy MK. A high voltage magnesium battery based on H2SO4-doped (PVA)0.7(NaBr)0.3 solid polymer electrolyte. J Power Sources, 2008, 185: 1509–1513CrossRefGoogle Scholar
  219. 219.
    Sheha E. Ionic conductivity and dielectric properties of plasticized PVA0.7(LiBr)0.3(H2SO4)2.7M solid acid membrane and its performance in a magnesium battery. Solid State Ionics, 2009, 180: 1575–1579CrossRefGoogle Scholar
  220. 220.
    Rasul S, Suzuki S, Yamaguchi S, Miyayama M. High capacity positive electrodes for secondary Mg-ion batteries. Electrochim Acta, 2012, 82: 243–249CrossRefGoogle Scholar
  221. 221.
    Zhang R, Yu X, Nam KW, et al. a-MnO2 as a cathode material for rechargeable Mg batteries. Electrochem Commun, 2012, 23: 110–113CrossRefGoogle Scholar
  222. 222.
    Rasul S, Suzuki S, Yamaguchi S, Miyayama M. Synthesis and electrochemical behavior of hollandite MnO2/acetylene black composite cathode for secondary Mg-ion batteries. Solid State Ionics, 2012, 225: 542–546CrossRefGoogle Scholar
  223. 223.
    Ling C, Mizuno F. Phase stability of post-spinel compound AMn2O4 (A = Li, Na, or Mg) and its application as a rechargeable battery cathode. Chem Mater, 2013, 25: 3062–3071CrossRefGoogle Scholar
  224. 224.
    Rasul S, Suzuki S, Yamaguchi S, Miyayama M. Manganese oxide octahedral molecular sieves as insertion electrodes for rechargeable Mg batteries. Electrochim Acta, 2013, 110: 247–252CrossRefGoogle Scholar
  225. 225.
    Yuan C, Zhang Y, Pan Y, et al. Investigation of the intercalation of polyvalent cations (Mg2+, Zn2+) into λ-MnO2 for rechargeable aqueous battery. Electrochim Acta, 2014, 116: 404–412CrossRefGoogle Scholar
  226. 226.
    Kim JS, Chang WS, Kim RH, et al. High-capacity nanostructured manganese dioxide cathode for rechargeable magnesium ion batteries. J Power Sources, 2014, 273: 210–215CrossRefGoogle Scholar
  227. 227.
    Arthur TS, Zhang R, Ling C, et al. Understanding the electrochemical mechanism of K-aMnO2 for magnesium battery cathodes. ACS Appl Mater Interfaces, 2014, 6: 7004–7008CrossRefGoogle Scholar
  228. 228.
    Mizuno F, Singh N, Arthur TS, et al. Understanding and overcoming the challenges posed by electrode/electrolyte interfaces in rechargeable magnesium batteries. Front Energy Res, 2014, 2: 1–11CrossRefGoogle Scholar
  229. 229.
    Nam KW, Kim S, Lee S, et al. The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries. Nano Lett, 2015, 15: 4071–4079CrossRefGoogle Scholar
  230. 230.
    Okamoto S, Ichitsubo T, Kawaguchi T, et al. Intercalation and pus hout process with spinel-to-rocksalt transition on Mg insertion into spinel oxides in magnesium batteries. Adv Sci, 2015, doi: 10.1002/advs.201500072Google Scholar
  231. 231.
    Zhang R, Arthur TS, Ling C, Mizuno F. Manganese dioxides as rechargeable magnesium battery cathode; synthetic approach to understand magnesiation process. J Power Sources, 2015, 282: 630–638CrossRefGoogle Scholar
  232. 232.
    Song J, Noked M, Gillette E, et al. Activation of a MnO2 cathode by water-stimulated Mg2+ insertion for a magnesium ion battery. Phys Chem Chem Phys, 2015, 17: 5256–5264CrossRefGoogle Scholar
  233. 233.
    Yamada A, Tanaka M, Tanaka K, Sekai K. Jahn-Teller instability in spinel Li–Mn–O. J Power Sources, 1999, 81-82: 73–78CrossRefGoogle Scholar
  234. 234.
    Kim HS, Arthur TS, Allred GD, et al. Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat Commun, 2011, 2: 427CrossRefGoogle Scholar
  235. 235.
    Park OK, Cho Y, Lee S, et al. Who will drive electric vehicles, olivine or spinel? Energy Environ Sci, 2011, 4: 1621–1633CrossRefGoogle Scholar
  236. 236.
    Spahr ME, Novák P, Haas O, Nesper R. Electrochemical insertion of lithium, sodium, and magnesium in molybdenum(VI) oxide. J Power Sources, 1995, 54: 346–351CrossRefGoogle Scholar
  237. 237.
    Sian TS, Reddy GB. Infrared spectroscopic studies on Mg intercalated crystalline MoO3 thin films. Appl Surf Sci, 2004, 236: 1–5CrossRefGoogle Scholar
  238. 238.
    Pandey GP, Agrawal RC, Hashmi SA. Magnesium ion-conducting gel polymer electrolytes dispersed with fumed silica for rechargeable magnesium battery application. J Solid State Electrochem, 2011, 15: 2253–2264CrossRefGoogle Scholar
  239. 239.
    Sutto TE, Duncan TT. Electrochemical and structural characterization of Mg ion intercalation into RuO2 using an ionic liquid electrolyte. Electrochim Acta, 2012, 79: 170–174CrossRefGoogle Scholar
  240. 240.
    Dueber RE, Fleetwood JM, Dickens PG. The insertion of magnesium into a-U3O8. Solid State Ionics, 1992, 50: 329–337CrossRefGoogle Scholar
  241. 241.
    Sutto TE, Duncan TT. Electrochemical and structural characterization of Mg ion intercalation into Co3O4 using ionic liquid electrolytes. Electrochim Acta, 2012, 80: 413–417CrossRefGoogle Scholar
  242. 242.
    Kamioka N, Ichitsubo T, Uda T, et al. Synthesis of spinel-type magnesium cobalt oxide and its electrical conductivity. Mater Trans, 2008, 49: 824–828CrossRefGoogle Scholar
  243. 243.
    Ichitsubo T, Adachi T, Yagi S, Doi T. Potential positive electrodes for high-voltage magnesium-ion batteries. J Mater Chem, 2011, 21: 11764–11772CrossRefGoogle Scholar
  244. 244.
    Sheha E. Studies on TiO2/reduced graphene oxide composites as cathode materials for magnesium-ion battery. Graphene. 2014, 3: 36–43CrossRefGoogle Scholar
  245. 245.
    Su S, Huang Z, NuLi Y, et al. A novel rechargeable battery with a magnesium anode, a titanium dioxide cathode, and a magnesium borohydride/tetraglyme electrolyte. Chem Commun, 2015, 51: 2641–2644CrossRefGoogle Scholar
  246. 246.
    Padhi AK. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc, 1997, 144: 1188–1194CrossRefGoogle Scholar
  247. 247.
    Kang B, Ceder G. Battery materials for ultrafast charging and discharging. Nature, 2009, 458: 190–193CrossRefGoogle Scholar
  248. 248.
    Makino K, Katayama Y, Miura T, Kishi T. Electrochemical insertion of magnesium to Mg0.5Ti2(PO4)3. J Power Sources, 2001, 99: 66–69CrossRefGoogle Scholar
  249. 249.
    Makino K, Katayama Y, Miura T, Kishi T. Magnesium insertion into Mg0.5+y(FeyTi1-y)2(PO4)3. J Power Sources, 2001, 97-98: 512–514CrossRefGoogle Scholar
  250. 250.
    Makino K, Katayama Y, Miura T, Kishi T. Preparation and electrochemical magnesium insertion behaviors of Mg0.5+y(MeyTi1-y)2 (PO4)3 (Me = Cr, Fe). J Power Sources, 2002, 112: 85–89CrossRefGoogle Scholar
  251. 251.
    Huang Z, Masese T, Orikasa Y, et al. MgFePO4F as a feasible cathode material for magnesium batteries. J Mater Chem A, 2014, 2: 11578–11582CrossRefGoogle Scholar
  252. 252.
    Huang ZD, Masese T, Orikasa Y, Mori T, Yamamoto K. Vanadium phosphate as a promising high-voltage magnesium ion (de)-intercalation cathode host. RSC Adv, 2014, 5: 8598–8603CrossRefGoogle Scholar
  253. 253.
    Wu J, Gao G, Wu G, et al. MgVPO4F as a one-dimensional Mg-ion conductor for Mg ion battery positive electrode: a first principles calculation. RSC Adv, 2014, 4: 15014–15017CrossRefGoogle Scholar
  254. 254.
    Feng Z, Yang J, NuLi Y, et al. Preparation and electrochemical study of a new magnesium intercalation material Mg1.03Mn0.97SiO4. Electrochem Commun, 2008, 10: 1291–1294CrossRefGoogle Scholar
  255. 255.
    Feng Z, Yang J, Nuli Y, Wang J. Sol-gel synthesis of Mg1.03Mn0.97SiO4 and its electrochemical intercalation behavior. J Power Sources, 2008, 184: 604–609CrossRefGoogle Scholar
  256. 256.
    NuLi Y, Yang J, Wang J, Li Y. Electrochemical intercalation of Mg2+ in magnesium manganese silicate and its application as high-energy rechargeable magnesium battery cathode. J Phys Chem C, 2009, 113: 12594–12597CrossRefGoogle Scholar
  257. 257.
    NuLi Y, Yang J, Li Y, Wang J. Mesoporous magnesium manganese silicate as cathode materials for rechargeable magnesium batteries. Chem Commun, 2010, 46: 3794–3796CrossRefGoogle Scholar
  258. 258.
    Nuli Y, Zheng Y, Wang F, et al. MWNT/C/Mg1.03Mn0.97SiO4 hierarchical nanostructure for superior reversible magnesium ion storage. Electrochem Commun, 2011, 13: 1143–1146CrossRefGoogle Scholar
  259. 259.
    Li Y, Nuli Y, Yang J, Yilinuer T, Wang. MgFeSiO4 prepared via a molten salt method as a new cathode material for rechargeable magnesium batteries. Chinese Sci Bull, 2011, 56: 386–390CrossRefGoogle Scholar
  260. 260.
    NuLi Y, Zheng Y, Wang Y, Yang J, Wang J. Electrochemical intercalation of Mg2+ in 3D hierarchically porous magnesium cobalt silicate and its application as an advanced cathode material in rechargeable magnesium batteries. J Mater Chem, 2011, 21: 12437–12443CrossRefGoogle Scholar
  261. 261.
    Zheng Y, Nuli Y, Chen Q, et al. Magnesium cobalt silicate materials for reversible magnesium ion storage. Electrochim Acta, 2012, 66: 75–81CrossRefGoogle Scholar
  262. 262.
    Orikasa Y, Masese T, Koyama Y, et al. High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements. Sci Rep, 2014, 4: 5622CrossRefGoogle Scholar
  263. 263.
    Wu J, Gao G, Wu G, et al. Tavorite-FeSO4F as a potential cathode material for Mg ion batteries: a first principles calculation. Phys Chem Chem Phys, 2014, 16: 22974–22978CrossRefGoogle Scholar
  264. 264.
    Morgan D, Van der Ven A, Ceder G. Li conductivity in LixMPO4 (M=Mn, Fe, Co, Ni) olivine materials. Electrochem Solid State Lett, 2004, 7: A30–A32CrossRefGoogle Scholar
  265. 265.
    Bo SH, Grey CP, Khalifah PG. Defect-tolerant diffusion channels for M2+ ions in ribbon-type borates: structural insights into potential battery cathodes MgVBO4 and Mgx Fe2–xB2O5. Chem Mater, 2015, 27: 4630–4639CrossRefGoogle Scholar
  266. 266.
    Zhao Y, Ban C, Xu Q, Wei SH, Dillon AC. Charge-driven structural transformation and valence versatility of boron sheets in magnesium borides. Phys Rev B, 2011, 83: 1–5Google Scholar
  267. 267.
    Zhang R, Mizuno F, Ling C. Fullerenes: non-transition metal clusters as rechargeable magnesium battery cathodes. Chem Commun, 2015, 51: 1108–1111CrossRefGoogle Scholar
  268. 268.
    NuLi Y, Guo Z, Liu H, Yang J. A new class of cathode materials for rechargeable magnesium batteries: organosulfur compounds based on sulfur-sulfur bonds. Electrochem Commun, 2007, 9: 1913–1917CrossRefGoogle Scholar
  269. 269.
    NuLi Y, Chen Q, Wang W, et al. Carbyne polysulfide a s a novel cathode material for rechargeable magnesium batteries. Sci World J, 2014, 2014: 107918CrossRefGoogle Scholar
  270. 270.
    Sano H, Senoh H, Yao M, Sakaebe H, Kiyobayashi T. Mg2+ storage in organic positive-electrode active material based on 2,5-dimethoxy-1,4-benzoquinone. Chem Lett, 2012, 41: 1594–1596CrossRefGoogle Scholar
  271. 271.
    Chen Q, Nuli YN, Guo W, et al. PTMA/graphene as a novel cathode material for rechargeable magnesium batteries. Acta Phys Chim Sin, 2013, 29: 2295–2299Google Scholar
  272. 272.
    Kanakaiah V, Latha M, Sravan B, Palanisamy A, Rani JV. Rechargeable magnesium carbon-fluoride battery with electrolyte gel of ionic liquid and low molecular weight gelator. J Electrochem Soc, 2014, 161: A1586–A1592CrossRefGoogle Scholar
  273. 273.
    Giraudet J, Claves D, Guérin K, et al. Magnesium batteries: towards a first use of graphite fluorides. J Power Sources, 2007, 173: 592–598CrossRefGoogle Scholar
  274. 274.
    Kim H, Hong J, Park KY, et al. Aqueous rechargeable Li and Na ion batteries. Chem Rev, 2014, 114: 11788–11827CrossRefGoogle Scholar
  275. 275.
    Wang RY, Wessells CD, Huggins RA, Cui Y. Highly reversible open framework nanoscale electrodes for divalent ion batteries. Nano Lett, 2013, 13: 5748–5752CrossRefGoogle Scholar
  276. 276.
    Mizuno Y, Okubo M, Hosono E, et al. Suppressed activation energy for interfacial charge transfer of a Prussian blue analog thin film electrode with hydrated ions (Li+, Na+, and Mg2+). J Phys Chem C, 2013, 117: 10877–10882CrossRefGoogle Scholar
  277. 277.
    Mizuno Y, Okubo M, Hosono E, et al. Electrochemical Mg2+ intercalation into a bimetallic CuFe Prussian blue analog in aqueous electrolytes. J Mater Chem A, 2013, 1: 13055–13059CrossRefGoogle Scholar
  278. 278.
    Zhang R, Ling C, Mizuno F. A conceptual magnesium battery with ultrahigh rate capability. Chem Commun, 2015, 51: 1487–1490CrossRefGoogle Scholar
  279. 279.
    Zhao-Karger Z, Zhao X, Wang D, et al. Performance improvement of magnesium sulfur batteries with modified non-nucleophilic electrolytes. Adv Energy Mater, 2015, doi: 10.1002/aenm.201401155Google Scholar
  280. 280.
    Aurbach D, Gizbar H, Schechter A, et al. Electrolyte solutions for rechargeable magnesium batteries based on organomagnesium chloroaluminate complexes. J Electrochem Soc, 2002, 149: A115–A121CrossRefGoogle Scholar
  281. 281.
    Tran TT, Lamanna WM, Obrovac MN. Evaluation of Mg[N(SO2CF3)2]2/acetonitrile electrolyte for use in Mg-ion cells. J Electrochem Soc, 2012, 159: A2005–A2009CrossRefGoogle Scholar
  282. 282.
    Chen Q, Nuli YN, Yang J, Kailibinuer K, Wang JL. Effects of current co llectors on the electrochemical performance of electrolytes for rechargeable magnesium batteries. Acta Phys Chim Sin, 2012, 28: 2625–2631Google Scholar
  283. 283.
    Cheng Y, Liu T, Shao Y, et al. Electrochemically stable cathode current collectors for rechargeable magnesium batteries. J Mater Chem A, 2014, 2: 2473–2477CrossRefGoogle Scholar
  284. 284.
    Wall C, Zhao-Karger Z, Fichtner M. Corrosion resistance of current collector materials in bisamide based electrolyte for magnesium batteries. ECS Electrochem Lett, 2014, 4: C8–C10CrossRefGoogle Scholar
  285. 285.
    Yagi S, Tanaka A, Ichikawa Y, Ichitsubo T, Matsubara E. Electrochemical stability of magnesium battery current collectors in a grignard reagent-based electrolyte. J Electrochem Soc, 2013, 160: C83–C88CrossRefGoogle Scholar
  286. 286.
    Yagi S, Tanaka A, Ichitsubo T, Matsubara E. Electrochemical stability of metal electrodes for reversible magnesium deposition/dissolution in tetrahydrofuran dissolving ethylmagnesium chloride. ECS Electrochem Lett, 2012, 1: D11–D14CrossRefGoogle Scholar
  287. 287.
    Gofer Y, Chusid O, Gizbar H, et al. Improved electrolyte solutions for rechargeable magnesium batteries. Electrochem Solid State Lett, 2006, 9: A257–A260CrossRefGoogle Scholar
  288. 288.
    Sasaki I, Murase K, Ichii T, Uchimoto Y, Sugimura H. Anodic dissolution behavior of magnesium in hydrophobic ionic liquids. ECS Trans, 2011, 33: 65–70CrossRefGoogle Scholar
  289. 289.
    Kratochvil B, Lorah E, Garber C. Silver-silver nitrate couple as reference electrode in acetonitrile. Anal Chem, 1969, 41: 1793–1796CrossRefGoogle Scholar
  290. 290.
    Snook GA, Best AS, Pandolfo AG, Hollenkamp AF. Evaluation of a Ag|Ag+ reference electrode for use in room temperature ionic liquids. Electrochem Commun, 2006, 8: 1405–1411CrossRefGoogle Scholar
  291. 291.
    Ruch PW, Cericola D, Hahn M, Kötz R, Wokaun A. On the use of activated carbon as a quasi-reference electrode in non-aqueous electrolyte solutions. J Electroanal Chem, 2009, 636: 128–131CrossRefGoogle Scholar
  292. 292.
    Chen Y, Devine TM, Evans JW, et al. Examination of the corrosion behavior of aluminum current collectors in lithium/polymer batteries. J Electrochem Soc, 1999, 146: 1310–1317CrossRefGoogle Scholar
  293. 293.
    Myung ST, Hitoshi Y, Sun YK. Electrochemical behavior and passivation of current collectors in lithium-ion batteries. J Mater Chem, 2011, 21: 9891–9911CrossRefGoogle Scholar
  294. 294.
    Doe RE, Blomgren GE, Persson KA. Rechargeable magnesium ion cell components and assembly. US Patent, 20110159381 A1, 2011-06-30Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Robert C. Massé
    • 1
  • Evan Uchaker
    • 1
  • Guozhong Cao
    • 1
    • 2
    • 3
  1. 1.Department of Materials Science and EngineeringUniversity of WashingtonSeattleUSA
  2. 2.Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijingChina
  3. 3.School of Materials Science and EngineeringDalian University of TechnologyDalianChina

Personalised recommendations