Science China Materials

, Volume 58, Issue 7, pp 521–533 | Cite as

Comparison of surface and bulk nitrogen modification in highly porous carbon for enhanced supercapacitors

  • Stephanie L. Candelaria
  • Evan Uchaker
  • Guozhong Cao


Highly porous carbon prepared through sol-gel processing can be modified with nitrogen via a simple solution-based method to achieve increased capacitance. Nitrogen was added either in the form of a surface coating using hexamine or incorporated into the bulk carbon network upon heat treatment of the hexamine-coated carbon. The properties and electrochemical behavior of both materials were measured and compared to that of unmodified porous carbon. Nitrogen in the bulk carbon network shows increased conductivity, while nitrogen coated on the surface of porous carbon is more effective at increasing capacitance. Nitrogen modification can also reduce diffusivity resistance and charge transfer resistance, resulting in supercapacitors with better performance at higher charge and discharge rates.


溶胶-凝胶法制备的高孔隙度多孔碳材料可通过简单溶液法用氮进行改性从而增加电容. 氮的引入可采用表面氮改性通过 引入六亚甲基四胺涂层再热解分解, 或在碳网结构中引入氮两种方式. 本文对两种材料的性能和电化学行为进行测量并与未改 性的多 孔碳进行比较. 在碳网结构中的氮表现出增强的导电性, 而表面进行氮改性的多孔碳对于增强电容更有效. 氮改性还可以通过 减少扩 散电阻和电荷转移电阻, 进而增强超级电容器在高倍率的充放电性能.


  1. 1.
    Hall PJ, Mirzaeian M, Fletcher SI, et al. Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energ Environ Sci, 2010, 3: 1238–1251CrossRefGoogle Scholar
  2. 2.
    Liu C, Li F, Ma LP, et al. Advanced materials for energy storage. Adv Mater, 2010, 22: E28–E62CrossRefGoogle Scholar
  3. 3.
    Arico AS, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater, 2005, 4: 366–377CrossRefGoogle Scholar
  4. 4.
    Zhang QF, Uchaker E, Candelaria SL, et al. Nanomaterials for energy conversion and storage. Chem Soc Rev, 2013, 42: 3127–3171CrossRefGoogle Scholar
  5. 5.
    Candelaria SL, Shao YY, Zhou W, et al. Nanostructured carbon for energy storage and conversion. Nano Energ, 2012, 1: 195–220CrossRefGoogle Scholar
  6. 6.
    Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin. Science, 2014, 343: 1210–1211CrossRefGoogle Scholar
  7. 7.
    Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater, 2008, 7: 845–854CrossRefGoogle Scholar
  8. 8.
    Chen WC, Wen TC, Teng HS. Polyaniline-deposited porous carbon electrode for supercapacitor. Electrochim Acta, 2003, 48: 641–649CrossRefGoogle Scholar
  9. 9.
    Inagaki M, Konno H, Tanaike O. Carbon materials for electrochemical capacitors. J Power Sources, 2010, 195: 7880–7903CrossRefGoogle Scholar
  10. 10.
    Barbieri O, Hahn M, Herzog A, et al. Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon, 2005, 43: 1303–1310CrossRefGoogle Scholar
  11. 11.
    Biener J, Stadermann M, Suss M, et al. Advanced carbon aerogels for energy applications. Energ Environ Sci, 2011, 4: 656–667CrossRefGoogle Scholar
  12. 12.
    Dutta S, Bhaumik A, Wu KCW. Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energ Environ Sci, 2014, 7: 3574–3592CrossRefGoogle Scholar
  13. 13.
    Frackowiak E. Carbon materials for supercapacitor application. Phys Chem Chem Phys, 2007, 9: 1774–1785CrossRefGoogle Scholar
  14. 14.
    Paraknowitsch JP, Thomas A. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur, and phosphorus for energy applications. Energ Environ Sci, 2013, 6: 2839–2855CrossRefGoogle Scholar
  15. 15.
    Wood KN, O’Hayre R, Pylypenko S. Recent progress on nitrogen/ carbon structures designed for use in energy and sustainability applications. Energ Environ Sci, 2014, 7: 1212–1249CrossRefGoogle Scholar
  16. 16.
    Wang DW, Li F, Chen ZG, et al. Synthesis and electrochemical property of boron-doped mesoporous carbon in supercapacitor. Chem Mater, 2008, 20: 7195–7200CrossRefGoogle Scholar
  17. 17.
    Zhao Y, Candelaria SL, Liu Q, et al. Porous carbon with high capacitance and graphitization through controlled addition and removal of sulfur-containing compounds. Nano Energ, 2015, 12: 567–577CrossRefGoogle Scholar
  18. 18.
    Jurewicz K, Babel K, Ziolkowski A, et al. Ammoxidation of active carbons for improvement of supercapacitor characteristics. Electrochim Acta, 2003, 48: 1491–1498CrossRefGoogle Scholar
  19. 19.
    Azais P, Duclaux L, Florian P, et al. Causes of supercapacitors ageing in organic electrolyte. J Power Sources, 2007, 171: 1046–1053CrossRefGoogle Scholar
  20. 20.
    Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 2001, 39: 937–950CrossRefGoogle Scholar
  21. 21.
    Beguin F, Frackowiak E (eds.). Carbons for Electrochemical Energy Storage and Conversion Systems. Boca Raton: CRC Press, 2009Google Scholar
  22. 22.
    Hulicova D, Yamashita J, Soneda Y, et al. Supercapacitors prepared from melamine-based carbon. Chem Mater, 2005, 17: 1241–1247CrossRefGoogle Scholar
  23. 23.
    Ania CO, Khomenko V, Raymundo-Pinero E, et al. The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template. Adv Funct Mater, 2007, 17: 1828–1836CrossRefGoogle Scholar
  24. 24.
    Li WR, Chen DH, Li Z, et al. Nitrogen enriched mesoporous carbon spheres obtained by a facile method and its application for electrochemical capacitor. Electrochem Commun, 2007, 9: 569–573CrossRefGoogle Scholar
  25. 25.
    Lota G, Grzyb B, Machnikowska H, et al. Effect of nitrogen in carbon electrode on the supercapacitor performance. Chem Phys Lett, 2005, 404: 53–58CrossRefGoogle Scholar
  26. 26.
    Beguin F, Szostak K, Lota G, et al. A self-supporting electrode for supercapacitors prepared by one-step pyrolysis of carbon nanotube/polyacrylonitrile blends. Adv Mater, 2005, 17: 2380–2384CrossRefGoogle Scholar
  27. 27.
    Hulicova-Jurcakova D, Kodama M, Shiraishi S, et al. Nitrogenenriched nonporous carbon electrodes with extraordinary supercapacitance. Adv Funct Mater, 2009, 19: 1800–1809CrossRefGoogle Scholar
  28. 28.
    Frackowiak E. Supercapacitors based on carbon materials and ionic liquids. J Braz Chem Soc, 2006, 17: 1074–1082CrossRefGoogle Scholar
  29. 29.
    Li M, Xue JM. Integrated synthesis of nitrogen-doped mesoporous carbon from melamine resins with superior performance in supercapacitors. J Phys Chem C, 2014, 118: 2507–2517CrossRefGoogle Scholar
  30. 30.
    Qiu B, Pan CT, Qian WJ, et al. Nitrogen-doped mesoporous carbons originated from ionic liquids as electrode materials for supercapacitors. J Mater Chem A, 2013, 1: 6373–6378CrossRefGoogle Scholar
  31. 31.
    Khalid B, Meng QH, Li JT, et al. Nitrogen rich graphene-crosslinked melamine formaldehyde carbon cryogels for supercapacitors. Electrochim Acta, 2014, 142: 101–107CrossRefGoogle Scholar
  32. 32.
    Su FB, Poh CK, Chen JS, et al. Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energ Environ Sci, 2011, 4: 717–724CrossRefGoogle Scholar
  33. 33.
    Laheaar A, Delpeux-Ouldriane S, Lust E, et al. Ammonia treatment of activated carbon powders for supercapacitor electrode application. J Electrochem Soc, 2014, 161: A568–A575CrossRefGoogle Scholar
  34. 34.
    Kawaguchi M, Itoh A, Yagi S, et al. Preparation and characterization of carbonaceous materials containing nitrogen as electrochemical capacitor. J Power Sources, 2007, 172: 481–486CrossRefGoogle Scholar
  35. 35.
    Garcia BB, Candelaria SL, Cao GZ. Nitrogenated porous carbon electrodes for supercapacitors. J Mater Sci, 2012, 47: 5996–6004CrossRefGoogle Scholar
  36. 36.
    Chen LF, Zhang XD, Liang HW, et al. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano, 2012, 6: 7092–7102CrossRefGoogle Scholar
  37. 37.
    Zhao L, Fan LZ, Zhou MQ, et al. Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv Mater, 2010, 22: 5202–5206CrossRefGoogle Scholar
  38. 38.
    Pels JR, Kapteijn F, Moulijn JA, et al. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon, 1995, 33: 1641–1653CrossRefGoogle Scholar
  39. 39.
    Kapteijn F, Moulijn JA, Matzner S, et al. The development of nitrogen functionality in model chars during gasification in CO2 and O2. Carbon, 1999, 37: 1143–1150CrossRefGoogle Scholar
  40. 40.
    Jung MJ, Jeong E, Cho S, et al. Effects of surface chemical properties of activated carbon modified by amino-fluorination for electric double-layer capacitor. J Colloid Interf Sci, 2012, 381: 152–157CrossRefGoogle Scholar
  41. 41.
    Sepehri S, Garcia BB, Zhang Q, et al. Enhanced electrochemical and structural properties of carbon cryogels by surface chemistry alteration with boron and nitrogen. Carbon, 2009, 47: 1436–1443CrossRefGoogle Scholar
  42. 42.
    Candelaria SL, Garcia BB, Liu DW, et al. Nitrogen modification of highly porous carbon for improved supercapacitor performance. J Mater Chem, 2012, 22: 9884–9889CrossRefGoogle Scholar
  43. 43.
    Wu MQ, Snook GA, Gupta V, et al. Electrochemical fabrication and capacitance of composite films of carbon nanotubes and polyaniline. J Mater Chem, 2005, 15: 2297–2303CrossRefGoogle Scholar
  44. 44.
    Ingram MD, Pappin AJ, Delalande F, et al. Development of electrochemical capacitors incorporating processable polymer gel electrolytes. Electrochim Acta, 1998, 43: 1601–1605CrossRefGoogle Scholar
  45. 45.
    Hughes M, Chen GZ, Shaffer MSP, et al. Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole. Chem Mater, 2002, 14: 1610–1613CrossRefGoogle Scholar
  46. 46.
    Zhang K, Zhang LL, Zhao XS, et al. Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater, 2010, 22: 1392–1401CrossRefGoogle Scholar
  47. 47.
    Huang WS, Humphrey BD, Macdiarmid AG. Polyaniline, a novel conducting polymer-morphology and chemistry of its oxidation and reduction in aqueous-electrolytes. J Chem Soc Farad T 1, 1986, 82: 2385–2400CrossRefGoogle Scholar
  48. 48.
    Kotz R, Carlen M. Principles and applications of electrochemical capacitors. Electrochim Acta, 2000, 45: 2483–2498CrossRefGoogle Scholar
  49. 49.
    Sanchez-Lopez JC, Donnet C, Lefebvre F, et al. Bonding structure in amorphous carbon nitride: a spectroscopic and nuclear magnetic resonance study. J Appl Phys, 2001, 90: 675–681CrossRefGoogle Scholar
  50. 50.
    Dementjev AP, de Graaf A, van de Sanden MCM, et al. X-ray photoelectron spectroscopy reference data for identification of the C3N4 phase in carbon-nitrogen films. Diam Relat Mater, 2000, 9: 1904–1907CrossRefGoogle Scholar
  51. 51.
    Hulicova-Jurcakova D, Seredych M, Lu GQ, et al. Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv Funct Mater, 2009, 19: 438–447CrossRefGoogle Scholar
  52. 52.
    Seredych M, Hulicova-Jurcakova D, Lu GQ, et al. Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon, 2008, 46: 1475–1488CrossRefGoogle Scholar
  53. 53.
    Wu DC, Fu RW, Zhang ST, et al. The preparation of carbon aerogels based upon the gelation of resorcinol-furfural in isopropanol with organic base catalyst. J Non-Cryst Solids, 2004, 336: 26–31CrossRefGoogle Scholar
  54. 54.
    Garcia BB, Liu DW, Sepehri S, et al. Hexamethylenetetramine multiple catalysis as a porosity and pore size modifier in carbon cryogels. J Non-Cryst Solids, 2010, 356: 1620–1625CrossRefGoogle Scholar
  55. 55.
    Feaver A, Cao GZ. Activated carbon cryogels for low pressure methane storage. Carbon, 2006, 44: 590–593CrossRefGoogle Scholar
  56. 56.
    Lei Z, Chen Z, Zhao XS. Growth of polyaniline on hollow carbon spheres for enhancing electrocapacitance. J Phys Chem C, 2010, 114: 19867–19874CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Stephanie L. Candelaria
    • 1
  • Evan Uchaker
    • 1
  • Guozhong Cao
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of WashingtonSeattleUSA

Personalised recommendations