Science China Materials

, Volume 58, Issue 7, pp 566–573 | Cite as

Large-scale solvent-thermal synthesis of graphene/magnetite/conductive oligomer ternary composites for microwave absorption

  • Dong-Xu He
  • Yao Qiu
  • Lin-Ling Li
  • Rui Zhao
  • Wei-Dong Xue


Nanocomposites exhibiting high electric conductivity and high saturation magnetization were synthesized in bulk using a solvent-thermal route, which combined the hybridization growth of Fe3O4 nanoparticles, graphene oxide, and a conductive oligomer in one step. The hybrid spheres with diameters of 100–300 nm (mostly approximately 200 nm) consisted of a homogenous phase without obvious interfaces between the ternary components. The electric conductivity of the hybrid material was greatly improved after heat treatment at high temperature. Because of the interfacial polarization and good separation property due to its magnetism properties, the interpenetrating nature of the materials yielded good synergistic effects on the electromagnetic wave absorbing properties. The multi-frequency reflection band covering the C band and Ku band with a maximum reflection loss of −45 dB for a thickness of 5 mm is promising for lightweight and strong electromagnetic attenuation applications.


Graphene Oxide Microwave Absorption Reflection Loss Science China Material Ternary Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


石墨烯材料优异的性能使其在各个领域得到广泛的应用. 本文利用水热法合成出了具有高电导率和磁饱和磁化强度的石墨烯/四氧化三铁/高分子化合物三元复合纳米材料, 经高温处理进一步提升了该材料的电导率. 该材料所形成的直径在100–300 nm之间的三元微球与石墨烯交联形成的互穿网络结构, 使其不同组分在电磁波吸收方面表现出了良好的协同效应. 通过测试表明吸波层厚度为5 mm时最大反射损耗达到了−45 dB, 且具有较大的吸收带宽. 这些优异的性能展现了该材料在电磁屏蔽方向的广阔的应用前景.


  1. 1.
    Cheetham AK, Rao CNR. There’s room in the middle. Science, 2007, 318:58–59CrossRefGoogle Scholar
  2. 2.
    Perez JM, Loughlin TO, Simeone FJ, Weissleder R, Josephson L. Magnetic relaxation switches capable of sensing molecular interactions. J Am Chem Soc, 2002, 124:2856–2857CrossRefGoogle Scholar
  3. 3.
    Louie AY, Huber MM, Ahrens ET, et al. In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol, 2000, 18:321–325CrossRefGoogle Scholar
  4. 4.
    Pan ZW, Dai ZR, Wang ZL. Nanobelts of semiconducting oxides. Science, 2001, 291:1947–1949CrossRefGoogle Scholar
  5. 5.
    Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298:2176–2179CrossRefGoogle Scholar
  6. 6.
    Gee SH, Hong YK, Erickson DW, Park MH. Synthesis and aging effect of spherical magnetite (Fe3O4) nanoparticles for biosensor applications. J Appl Phys, 2003, 93:7560–7562CrossRefGoogle Scholar
  7. 7.
    Woo K, Hong J, Choi S, et al. Easy synthesis and magnetic properties of iron oxide nanoparticles. Chem Mater, 2004, 16:2814–2818CrossRefGoogle Scholar
  8. 8.
    Yoshikawa H, Hayashida K, Kozuka Y, et al. Preparation and magnetic properties of hollow nano-spheres of cobalt and cobalt oxide: drastic cooling-field effects on remnant magnetization of antiferromagnet. Appl Phys Lett, 2004, 85:5297CrossRefGoogle Scholar
  9. 9.
    Ohnishi M, Kozuka Y, Ye QL, et al. Phase selective preparations and surface modifications of spherical hollow nanomagnets. J Mater Chem, 2006, 16:3215–3220CrossRefGoogle Scholar
  10. 10.
    Ye QL, Kozuka Y, Yoshikawa H, et al. Effec ts of the unique shape of submicron magnetite hollow spheres on magnetic properties and domain states. Phys Rev B, 2007, 75:224404CrossRefGoogle Scholar
  11. 11.
    Zhao R, Jia K, Wei JJ, Pu JX, Liu XB. Hierarchically nanostructured Fe3O4 microspheres and their novel microwave electromagnetic properties. Mater lett, 2010, 64:457–459CrossRefGoogle Scholar
  12. 12.
    Geim AK. Graphene: status and prospect. Science, 2009, 324:1530–1534.CrossRefGoogle Scholar
  13. 13.
    Zhang Y, Tan JW, Stoemer HL, Kim P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 2005, 438:201–204CrossRefGoogle Scholar
  14. 14.
    Wang X, Zhi L, Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett, 2008, 8:323–327CrossRefGoogle Scholar
  15. 15.
    Wu ZS, Ren WS, Wen L, et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano, 2010, 4:3187–3194CrossRefGoogle Scholar
  16. 16.
    Zhou GM, Wang DW, Li F, et al. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater, 2010, 22:5306–5313CrossRefGoogle Scholar
  17. 17.
    Xu Z, Gao C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat Commun, 2011, 2:571CrossRefGoogle Scholar
  18. 18.
    Che RC, Peng LM, Duan XF, Chen Q, Liang XL. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv Mater, 2004, 16:401–405CrossRefGoogle Scholar
  19. 19.
    Xu P, Han XJ, Wang C, et al. Synthesis of electromagnetic functionalized nickel/polypyrrole core/shell composites. J Phys Chem B, 2008, 112:10443–10448CrossRefGoogle Scholar
  20. 20.
    Liang JJ, Wang Y, Huang Y, et al. Electromagnetic interference shielding of graphene/epoxy composites. Carbon, 2009, 47:922–925CrossRefGoogle Scholar
  21. 21.
    Wang C, Han XJ, Xu P, et al. The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. App Phys Lett, 2011, 98:072906CrossRefGoogle Scholar
  22. 22.
    Wang TS, Liu ZH, Lu MM, et al. Graphene-Fe3O4 nanohybrids: synthesis and excellent electromagnetic absorption properties. J Appl Phys, 2013, 113:024314CrossRefGoogle Scholar
  23. 23.
    Xue WD, Zhao R, Du X, et al. Graphene-Fe3O4 micro-nano scaled hybrid spheres: synthesis and synergistic electromagnetic effect. Mat Res Bull, 2014, 50:285–291CrossRefGoogle Scholar
  24. 24.
    Marcano DC, Kosynkin DV, Berlin JM, et al. Improved synthesis of graphene oxide. ACS Nano 2010, 4:4806–4814CrossRefGoogle Scholar
  25. 25.
    Debe MK, Kan KK. Effect of gravity on copper phthalocy-anine thin films II: spectroscopic evidence for a new oriented thin film polymorph of copper phthalocyanine grown in a microgravity environment. Thin Solid Films, 1990, 186:289–325CrossRefGoogle Scholar
  26. 26.
    Zhang Y, Huang Y, Zhang TF, et al. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv Mater, 2015, 27:2049–2053CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Applied Electrochemistry, State Key Laboratory of Electronic Thin Films and Integrated Devices, Institute of Microelectronics and Solid-State ElectronicsUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations