Advertisement

The Third-Order Hermitian Toeplitz Determinant for Classes of Functions Convex in One Direction

  • Bogumiła Kowalczyk
  • Oh Sang Kwon
  • Adam LeckoEmail author
  • Young Jae Sim
  • Barbara Śmiarowska
Article
  • 25 Downloads

Abstract

In this paper, the sharp bounds for the third Hermitian Toeplitz determinant over classes of functions convex in the direction of the imaginary axis and convex in the direction of the positive real axis are computed.

Keywords

Hermitian Toeplitz matrix Univalent functions Functions convex in the direction of the imaginary axis Functions convex in the direction of the positive real axis Carathéodory class 

Mathematics Subject Classification

30C45 30C50 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ali, M.F., Thomas, D.K., Vasudevarao, A.: Toeplitz determinants whose elements are the coefficients of analytic and univalent functions. Bull. Aust. Math. Soc. 97(2), 253–264 (2018)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Babalola, K.O.: On \(H_3(1)\) Hankel determinants for some classes of univalent functions. In: Cho, Y.J. (ed.) Inequality Theory and Applications, vol. 6, pp. 1–7. Nova Science Publishers, New York (2010)Google Scholar
  3. 3.
    Bansal, D., Maharana, S., Prajapat, J.K.: Third order Hankel determinant for certain univalent functions. J. Korean Math. Soc. 52(6), 1139–1148 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bshouty, D., Lyzzaik, A.: Univalent Functions Starlike with Respect to a Boundary Point. Contemp. Math. 382, 83–87 (2005). (Complex Analysis and Dynamical Systems II, A Conference in Honor of Professor Lawrence Zalcman’s Sixtieth Birthday, June 9–12, 2003 Nahariya, Israel)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cho, N.E., Kowalczyk, B., Kwon, O.S., Lecko, A., Sim, Y.J.: The bound of the Hankel determinant for strongly starlike functions of order alpha. J. Math. Inequal 11(2), 429–439 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cho, N.E., Kowalczyk, B., Kwon, O.S., Lecko, A., Sim, Y.J.: The bounds of some determinants for starlike functions of order alpha. Bull. Malays. Math. Sci. Soc. 41(1), 523–535 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cho, N.E., Kowalczyk, B., Lecko, A.: Sharp bounds of some coefficient functionals over the class of functions convex in the direction of the imaginary axis. Bull. Aust. Math. Soc. (2019).  https://doi.org/10.1017/S0004972718001429 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ciozda, K.: O klasie funkcji wypukłych w ujemnym kierunku osi rzeczywistej, jej podklasach i podstawowych własnościach, Ph.D. Thesis, Lublin, (1978) (in Polish)Google Scholar
  9. 9.
    Ciozda, K.: Sur la classe des fonctions convexes vers l’axe réel négatif. Bull. Acad. Pol. Sci. 27(3–4), 255–261 (1979)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Ciozda, K.: Sur quelques problèmes extrémaux dans les classes des fonctions convexes vers l’axe réel négatif. Ann. Pol. Math. 38, 311–317 (1980)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cudna, K., Kwon, O.S., Lecko, A., Sim, Y.J., Śmiarowska, B.: The second and third-order Hermitian Toeplitz determinants for starlike and convex functions of order \(\alpha \). Boletin Soc. Mat. Mexicana (accepted)Google Scholar
  12. 12.
    Elin, M., Shoikhet, D.: Linearization Models for Complex Dynamical Systems. Topics in Univalent Functions, Functional Equations and Semigroup Theory. Birkhäuser, Basel (2010)zbMATHGoogle Scholar
  13. 13.
    Goodman, A.W.: Univalent Functions. Mariner, Tampa (1983)zbMATHGoogle Scholar
  14. 14.
    Hengartner, W., Schober, G.: On schlicht mappings to domains convex in one direction. Comment. Math. Helv. 45, 303–314 (1970)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Janteng, A., Halim, S.A., Darus, M.: Hankel determinant for starlike and convex functions. Int. J. Math. Anal. 1(13), 619–625 (2007)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Kowalczyk, B., Kwon, O.S., Lecko, A., Sim, Y.J.: The bounds of some determinants for functions of bounded turning of order alpha. Bull. de la Sociéte des Sciences et des Lettres de Łódź LXVII(1), 107–118 (2017)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Kowalczyk, B., Lecko, A.: Polynomial close-to-convex functions I. Preliminaries and the univalence problem. Bulletin de la Société Des Sciences et des Lettres de Łódź: Recherches sur les déformations 63(3), 49–62 (2013)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Kowalczyk, B., Lecko, A.: Polynomial close-to-convex functions II. Inclusion relation and coefficient formulae. Bulletin de la Société Des Sciences et des Lettres de Łódź: Recherches sur les déformations 63(3), 63–75 (2013)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Kowalczyk, B., Lecko, A., Sim, Y.J.: The sharp bound of the Hankel determinant of the third kind for convex functions. Bull. Aust. Math. Soc. 97, 435–445 (2018)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kowalczyk, B., Lecko, A., Lecko, M., Sim, Y.J.: The sharp bound of the third Hankel determinant for some classes of analytic functions. Bull. Korean Math. Soc. 55(6), 1859–1868 (2018)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Kwon, O.S., Lecko, A., Sim, Y.J.: The bound of the Hankel determinant of the third kind for starlike functions. Bull. Malays. Math. Sci. Soc. 42, 767–780 (2019)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Lecko, A.: Some subclasses of close-to-convex functions. Ann. Pol. Math. 58(1), 53–64 (1993)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lecko, A.: A generalization of analytic condition for convexity in one direction. Demonstr. Math. 30(1), 155–170 (1997)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Lecko, A.: On the class of functions convex in the negative direction of the imaginary axis. J. Aust. Math. Soc. 73, 1–10 (2002)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Lecko, A.: Some Methods in the Theory of Univalent Functions. Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów (2005)zbMATHGoogle Scholar
  26. 26.
    Lecko, A., Sim, Y.J., Śmiarowska, B.: The sharp bound of the Hankel determinant of the third kind for starlike functions of order \(1/2\). Complex Anal Oper Theory (2019).  https://doi.org/10.1007/s11785-018-0819-0 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Lee, S.K., Ravichandran, V., Supramanian, S.: Bound for the second Hankel determinant of certain univalent functions. J. Inequal Appl. 2013(281), 1–17 (2013)MathSciNetGoogle Scholar
  28. 28.
    Mishra, A.K., Gochhayat, P.: Second Hankel determinant for a class of analytic functions defined by fractional derivative. Int. J. Math. Math. Sci. 2008, Article ID 153280, 1–10 (2008)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Pommerenke, C.: Univalent Functions. Vandenhoeck & Ruprecht, Göttingen (1975)zbMATHGoogle Scholar
  30. 30.
    Prajapat, J.K., Bansal, D., Singh, A., Mishra, A.K.: Bounds on third Hankel determinant for close-to-convex functions. Acta Univ. Sapientae Math 7(2), 210–219 (2015)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Robertson, M.S.: Analytic functions star-like in one direction. Am. J. Math. 58, 465–472 (1936)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Study, E.: Vorlesungen über ausgewählte Gegenstände der Geometrie, Zweites Heft; Konforme Abbildung Einfach-Zusammenhängender Bereiche. Druck und Verlag von B.G. Teubner, Leipzig (1913)zbMATHGoogle Scholar
  33. 33.
    Sudharsan, T.V., Vijayalaksmi, S.P., Sthephen, B.A.: Third Hankel determinant for a subclass of analytic functions. Malaya J. Math. 2(4), 438–444 (2014) Google Scholar

Copyright information

© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2019

Authors and Affiliations

  1. 1.Department of Complex Analysis, Faculty of Mathematics and Computer ScienceUniversity of Warmia and Mazury in OlsztynOlsztynPoland
  2. 2.Department of MathematicsKyungsung UniversityBusanKorea

Personalised recommendations