Advertisement

On a Coefficient Conjecture for Bazilevič Functions

  • Nak Eun Cho
  • Virendra KumarEmail author
Article
  • 5 Downloads

Abstract

In this manuscript, a conjecture related to the estimate on the fifth coefficient of Bazilevič functions is settled for the range \(1\le \alpha \le \alpha ^*(\approx 2.049)\). However, for \(\alpha >\alpha ^*\), a non-sharp bound on the same is also derived. At the end of this manuscript, sharp upper bound on the functional \(|a_2a_3-a_4|\) is also obtained.

Keywords

Univalent function Bazilevič function Coefficient estimate Coefficient conjecture 

Mathematics Subject Classification

30C45 30C50 

Notes

Acknowledgements

The authors would like to express their gratitude to the referees for many valuable suggestions regarding the previous version of this paper. The first author was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2019R1I1A3A01050861).

References

  1. 1.
    Carathéodory, C.: Über den variabilitätsbereich der fourier’schen konstanten von positiven harmonischen funktionen. Rend. Circ. Mat. Palermo 32, 193–217 (1911)CrossRefGoogle Scholar
  2. 2.
    Grenander, U., Szegö, G.: Toeplitz Forms and Their Applications. California Monographs in Mathematical Sciences. University of California Press, Berkeley (1958)CrossRefGoogle Scholar
  3. 3.
    Krishna, D.V., Ramreddy, T.: Second Hankel determinant for the class of Bazilevič functions. Stud. Univ. Babeş-Bolyai Math. 60(3), 413–420 (2015)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Libera, R.J., Złotkiewicz, E.J.: Early coefficients of the inverse of a regular convex function. Proc. Amer. Math. Soc. 85(2), 225–230 (1982)MathSciNetCrossRefGoogle Scholar
  5. 5.
    MacGregor, T.H.: Functions whose derivative has a positive real part. Trans. Amer. Math. Soc. 104, 532–537 (1962)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Prokhorov, D.V., Szynal, J.: Inverse coefficients for \((\alpha,\beta )\)-convex functions. Ann. Univ. Mariae Curie-Skłodowska Sect. A 35, 125–143 (1981)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Ravichandran, V., Verma, S.: Bound for the fifth coefficient of certain starlike functions. C. R. Math. Acad. Sci. Paris 353(6), 505–510 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Sharma, P., Raina, R.K., Sokól, J.: On a set of close-to-convex functions. Stud. Sci. Math. Hung. 55(2), 190–202 (2018)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Sheil-Small, T.: On Bazilevič functions. Quart. J. Math. Oxford Ser. 23(2), 135–142 (1972)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Singh, R.: On Bazilevič functions. Proc. Amer. Math. Soc. 38, 261–271 (1973)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Sokół, Marjono, J., Thomas, D. K.: The fifth and sixth coefficients for Bazilevič functions \({\cal{B}}_1(\alpha )\). Mediterr. J. Math. 14(4), Art. ID. 158 (2017)Google Scholar
  12. 12.
    Thomas, D.K.: On starlike and close-to-convex univalent functions. J. Lond. Math. Soc. 42, 427–435 (1967)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Thomas, D.K.: On a subclass of Bazilevič functions. Int. J. Math. Math. Sci. 8(4), 779–783 (1985)CrossRefGoogle Scholar
  14. 14.
    Thomas, D.K.: On the coefficients of Bazilevič functions with logarithmic growth. Indian J. Math. 57(3), 403–418 (2015)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Zamorski, J.: On Bazilevič schlicht functions. Ann. Polon. Math. 12, 83–90 (1962)MathSciNetCrossRefGoogle Scholar

Copyright information

© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2019

Authors and Affiliations

  1. 1.Department of Applied MathematicsPukyong National UniversityBusanSouth Korea
  2. 2.Department of Mathematics, Ramanujan CollegeUniversity of DelhiKalkaji, New DelhiIndia

Personalised recommendations