Advertisement

Variable Triebel–Lizorkin-Type Spaces

  • Douadi DrihemEmail author
Article
  • 2 Downloads

Abstract

In this paper, we study Triebel–Lizorkin-type spaces with variable smoothness and integrability. We show that our space is well-defined, i.e., independent of the choice of basis functions and we obtain their atomic characterization. Moreover, the Sobolev embeddings for these function spaces are obtained.

Keywords

Atom Embeddings Triebel–Lizorkin space Maximal function Variable exponent 

Mathematics Subject Classification

46E35 

Notes

Acknowledgements

We would like to thank the referees for the valuable comments which helped to improve the paper.

References

  1. 1.
    Almeida, A., Caetano, A.: Variable exponent Besov–Morrey spaces, arXiv:1807.10687
  2. 2.
    Almeida, A., Hästö, P.: Besov spaces with variable smoothness and integrability. J. Funct. Anal. 258, 1628–1655 (2010)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Almeida, A., Samko, S.: Characterization of Riesz and Bessel potentials on variable Lebesgue spaces. J. Function Spaces Appl. 4(2), 113–144 (2006)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Besov, O.: Equivalent normings of spaces of functions of variable smoothness. Proc. Steklov Inst. Math. 243(4), 80–88 (2003)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Brezis, H., Mironescu, P.: Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces. J. Evol. Equ. 1, 387–404 (2001)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Cruz-Uribe, D., Fiorenza, A., Martell, J.M., Pérez, C.: The boundedness of classical operators in variable \(L^{p}\) spaces. Ann. Acad. Sci. Fenn. Math 13, 239–264 (2006)zbMATHGoogle Scholar
  7. 7.
    Diening, L., Harjulehto, P., Hästö, P., Růž ička, M.: Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017, Springer, Berlin (2011)Google Scholar
  8. 8.
    Diening, L.: Maximal function on generalized Lebesque spaces \( L^{p(\cdot )}\). Math. Inequal. Appl. 7(2), 245–253 (2004)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Diening, L., Harjulehto, P., Hästö, P., Mizuta, Y., Shimomura, T.: Maximal functions in variable exponent spaces: limiting cases of the exponent. Ann. Acad. Sci. Fenn. Math. 34(2), 503–522 (2009)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Diening, L., Hästö, P., Roudenko, S.: Function spaces of variable smoothness and integrability. J. Funct. Anal. 256(6), 1731–1768 (2009)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Drihem, D.: Characterizations of Besov-type and Triebel–Lizorkin-type spaces by differences. J. Funct. Spaces Appl. (2012), Article ID 328908, 24 ppGoogle Scholar
  12. 12.
    Drihem, D.: Variable Besov-types spaces, preprintGoogle Scholar
  13. 13.
    Drihem, D.: Some embeddings and equivalent norms of the \( {\cal{L}}_{p, q}^{\lambda, s}\) spaces. Funct. Approx. Comment. Math. 41(1), 15–40 (2009)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Drihem, D.: Atomic decomposition of Besov spaces with variable smoothness and integrability. J. Math. Anal. Appl. 389(1), 15–31 (2012)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Drihem, D.: Atomic decomposition of Besov-type and Triebel–Lizorkin-type spaces. Sci. China. Math. 56(5), 1073–1086 (2013)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Drihem, D.: Some properties of variable Besov-type spaces. Funct. Approx. Comment. Math. 52(2), 193–221 (2015)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Drihem, D.: Some characterizations of variable Besov-type spaces. Ann. Funct. Anal. 6(4), 255–288 (2015)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Frazier, M., Jawerth, B.: Decomposition of Besov spaces. Indiana Univ. Math. J. 34, 777–799 (1985)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Frazier, M., Jawerth, B.: A discrete transform and decomposition of distribution spaces. J. Funct. Anal. 93(1), 34–170 (1990)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Gurka, P., Harjulehto, P., Nekvinda, A.: Bessel potential spaces with variable exponent. Math. Inequal. Appl. 10(3), 661–676 (2007)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Hedberg, L., Netrusov, Y.: An axiomatic approach to function spaces, spectral synthesis, and Luzin approximation, Mem. Am. Math. Soc. 188, vi+97 pp (2007)Google Scholar
  22. 22.
    Izuki, M., Noi, T.: Duality of Besov, Triebel–Lizorkin and Herz spaces with variable exponents. Rend. Circ. Mat. Palermo. 63, 221–245 (2014)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Johnsen, J., Sickel, W.: A direct proof of Sobolev embeddings for quasi-homogeneous Lizorkin–Triebel spaces with mixed norms. J. Funct. Spaces Appl. 5, 183–198 (2007)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Kempka, H., Vybíral, J.: Spaces of variable smoothness and integrability: characterizations by local means and ball means of differences. J. Fourier Anal. Appl. 18(4), 852–891 (2012)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Kempka, H., Vybíral, J.: A note on the spaces of variable integrability and summability of Almeida and Hästö. Proc. Am. Math. Soc. 141(9), 3207–3212 (2013)zbMATHGoogle Scholar
  26. 26.
    Kováčik, O., Rákosník, J.: On spaces \( L^{p(x)}\) and \(W^{1, p(x)}\). Czechoslov. Math. J. 41(116), 592–618 (1991)zbMATHGoogle Scholar
  27. 27.
    Leopold, H.-G.: On Besov spaces of variable order of differentiation. Z. Anal. Anwen-dungen 8(1), 69–82 (1989)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Leopold, H.-G.: Interpolation of Besov spaces of variable order of differentiation. Arch. Math. (Basel) 53(2), 178–187 (1989)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Leopold, H.-G.: On function spaces of variable order of differentiation. Forum Math. 3, 633–644 (1991)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Leopold, H.-G.: Embedding of function spaces of variable order of differentiation in function spaces of variable order of integration. Czechoslov. Math. J 49(3), 633–644 (1999). (124)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Leopold, H.-G., Schrohe, E.: Trace theorems for Sobolev spaces of variable order of differentiation. Math. Nachr. 179, 223–245 (1996)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Liang, Y., Sawano, Y., Ullrich, T., Yang, D., Yuan, W.: A new framework for generalized Besov-type and Triebel–Lizorkin-type spaces. Dissertationes Math. (Rozprawy Mat.) 489 (2013)Google Scholar
  33. 33.
    Sawano, Y., Yang, D., Yuan, W.: New applications of Besov-type and Triebel–Lizorkin-type spaces. J. Math. Anal. Appl. 363, 73–85 (2010)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Sickel, W.: Smoothness spaces related to Morrey spaces-a survey. I. Eurasian Math. J 3(3), 110–149 (2012)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Sickel, W.: Smoothness spaces related to Morrey spaces-a survey. II. Eurasian Math. J. 4(1), 82–124 (2013)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Triebel, H.: Theory of Function Spaces. Birkhäuser Verlag, Basel (1983)zbMATHGoogle Scholar
  37. 37.
    Triebel, H.: Theory of Function Spaces II. Birkhäuser Verlag, Basel (1992)zbMATHGoogle Scholar
  38. 38.
    Triebel, H.: Fractals and Spectra. Birkhäuser, Basel (1997)zbMATHGoogle Scholar
  39. 39.
    Tyulenev, A.I.: Some new function spaces of variable smoothness. Sbornik Math. 206, 849–891 (2015)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Tyulenev, A.I.: On various approaches to Besov-type spaces of variable smoothness. J. Math. Anal. Appl. 451, 371–392 (2017)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Vybíral, J.: Sobolev and Jawerth embeddings for spaces with variable smoothness and integrability. Ann. Acad. Sci. Fenn. Math. 34(2), 529–544 (2009)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Xu, J.: Variable Besov and Triebel–Lizorkin spaces. Ann. Acad. Sci. Fenn. Math. 33, 511–522 (2008)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Xu, J.: An atomic decomposition of variable Besov and Triebel–Lizorkin spaces. Armen. J. Math. 2(1), 1–12 (2009)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Yang, D., Yuan, W.: A new class of function spaces connecting Triebel–Lizorkin spaces and \(Q\) spaces. J. Funct. Anal. 255, 2760–2809 (2008)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Yang, D., Yuan, W.: Relations among Besov-type spaces, Triebel–Lizorkin-type spaces and generalized Carleson measure spaces. Appl. Anal. 92(3), 549–561 (2013)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Yang, D., Zhuo, C., Yuan, W.: Triebel–Lizorkin-type spaces with variable exponents. Banach J. Math. Anal. 9(2), 146–202 (2015)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Yang, D., Zhuo, C., Yuan, W.: Besov-type spaces with variable smoothness and integrability. J. Funct. Anal. 269(6), 1840–1898 (2015)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato meet Besov, Lizorkin and Triebel. Lecture Notes in Mathematics, vol. 2005. Springer, Berlin (2010)Google Scholar
  49. 49.
    Yuan, W., Sickel, W., Yang, D.: On the coincidence of certain approaches to smoothness spaces related to Morrey spaces. Math. Nachr. 286(14–15), 1571–1584 (2013)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Yuan, W., Haroske, D., Skrzypczak, L., Yang, D.: Embedding properties of Besov-type spaces. Appl. Anal. 94(2), 318–340 (2015)MathSciNetzbMATHGoogle Scholar

Copyright information

© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Laboratory of Functional Analysis and Geometry of SpacesM’sila UniversityM’silaAlgeria

Personalised recommendations