Bargmann-Type Transforms and Modified Harmonic Oscillators

  • Hiroyuki ChiharaEmail author


We study some complete orthonormal systems on the real line. These systems are determined by Bargmann-type transforms, which are Fourier integral operators with complex-valued quadratic phase functions. Each system consists of eigenfunctions for a second-order elliptic differential operator like the Hamiltonian of the harmonic oscillator. We also study the commutative case of a certain class of systems of second-order differential operators called the non-commutative harmonic oscillators. By using the diagonalization technique, we compute the eigenvalues and eigenfunctions for the commutative case of the non-commutative harmonic oscillators. Finally, we study a family of functions associated with an ellipse in the phase plane. We show that the family is a complete orthogonal system on the real line.


Bargmann-type transforms Segal–Bargmann spaces Berezin–Toeplitz quantization Generalized Hermite functions Modified harmonic oscillators 

Mathematics Subject Classification

Primary 47B35 Secondary 47B32 47G30 



  1. 1.
    Abreu, L.D., Dörfler, M.: An inverse problem for localization operators. Inverse Probl. 28, 115001 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ali, S.T., Górska, K., Horzela, A., Szafraniec, F.H.: Squeezed states and Hermite polynomials in a complex variable. J. Math. Phys. 55, 012107 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform. Commun. Pure Appl. Math. 14, 187–214 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chihara, H.: Bounded Berezin–Toeplitz operators on the Segal–Bargmann space. Integral Equ. Oper. Theory 63, 321–335 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chihara, H.: Holomorphic Hermite functions and ellipses. Integral Transf. Spec. Funct. 28, 605–615 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chihara, H.: Holomorphic Hermite functions in Segal–Bargmann spaces. Complex Anal. Oper. Theory 13, 351–374 (2019)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Daubechies, I.: Time-frequency localization operators: a geometric phase space approach. IEEE Trans. Inform. Theory 34, 605–612 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Folland, G.B.: Harmonic Analysis in Phase Space. Princeton University Press, Princeton (1989)zbMATHGoogle Scholar
  9. 9.
    Parmeggiani, A.: Spectral theory of non-commutative harmonic oscillators: an introduction. In: Lecture Notes in Mathematics, vol. 1992. Springer, Berlin (2010)Google Scholar
  10. 10.
    Parmeggiani, A., Wakayama, M.: Non-commutative harmonic oscillators. I. Forum. Math. 14, 539–604 (2002)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Parmeggiani, A., Wakayama, M.: Non-commutative harmonic oscillators. II. Forum. Math. 14, 669–690 (2002)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Parmeggiani, A., Wakayama, M.: Corrigenda and remarks to: “non-commutative harmonic oscillators, I”. Forum. Math. 15, 955–963 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Sjöstrand, J.: Function spaces associated to global I-Lagrangian manifolds. In: Structure of Solutions to Differential Equations (Katata/Kyoto 1995), pp. 369–423, World Scientific Publishing, New York, (1996)Google Scholar
  14. 14.
    van Eijndhoven, S.J.L., Meyers, J.L.: New orthogonality relations for the Hermite polynomials and related Hilbert spaces. J. Math. Anal. Appl. 146, 89–98 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Yoshino, K.: Analytic continuation and applications of eigenvalues of Daubechies’ localization operator. Cubo 12, 203–212 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2019

Authors and Affiliations

  1. 1.College of EducationUniversity of the RyukyusNishiharaJapan

Personalised recommendations