Advertisement

The Picard and Gauss–Weierstrass Singular Integrals in (pq)-Calculus

  • A. Aral
  • E. Deniz
  • H. ErbayEmail author
Article
  • 16 Downloads

Abstract

The vast development of the techniques in both the quantum calculus and the post-quantum calculus leads to a significant increase in activities in approximation theory due to applications in computational science and engineering. Herein, we introduce (pq)-Picard and (pq)-Gauss–Weierstrass integral operators in terms of the (pq)-Gamma integral. We give a general formula for the monomials under both (pq)-Picard and (pq)-Gauss–Weierstrass operators as well as some special cases. We discuss the uniform convergence properties of them. We show that both operators have optimal global smoothness preservation property via usual modulus of continuity. Finally, we establish the rate of approximation using the weighted modulus of smoothness. Depending on the choices of parameters p and q in the integrals, we are able to obtain better error estimation than classical ones.

Keywords

 (p, q)-Picard integral operator  (p, q)-Gauss–Weierstrass integral operator Uniform convergence Global smoothness 

Mathematics Subject Classification

41A17 41A25 41A35 30E10 30C45 41A65 

Notes

Acknowledgements

We are thankful to the anonymous referees for their valuable comments to improve the quality of the article.

References

  1. 1.
    Acar, T.: (p, q)-generalization of Szász–Mirakyan operators. Math. Methods Appl. Sci. 39(10), 2685–2695 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Agratini, O., Aral, A., Deniz, E.: On two classes of approximation processes of integral type. Positivity 21(3), 1189–1199 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Anastassiou, G.A., Gal, S.: Approximation Theory: Moduli of Continuity and Global Smoothness Preservation. Springer, Berlin (2012)zbMATHGoogle Scholar
  4. 4.
    Aral, A., Gupta, V.: On q-Baskakov type operators. Demonstr. Math. 42(1), 109–122 (2009)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Aral, A., Gupta, V.: (p, q)-type beta functions of second kind. Adv. Oper. Theory 1(1), 134–146 (2016)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Aral, A., Gupta, V.: (p, q)-variant of Szász–Beta operators. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 21, 1189–1199 (2017)zbMATHGoogle Scholar
  7. 7.
    Aral, A., Gupta, V., Agarwal, R.P.: Applications of \(q\)-Calculus in Operator Theory. Springer, Berlin (2013)CrossRefzbMATHGoogle Scholar
  8. 8.
    Gadjiev, A.D.: Theorems of the of P. P. Korovkin type theorems. Math. Zametki 20(5), 781–786 (1976)Google Scholar
  9. 9.
    Gupta, V.: Bernstein Durrmeyer operators based on two parameters. Facta Universitatis, Series: Mathematics and Informatics 31(1), 79–95 (2016)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Gupta, V., Agarwal, R.P., et al.: Convergence Estimates in Approximation Theory, vol. 13. Springer, Berlin (2014)CrossRefzbMATHGoogle Scholar
  11. 11.
    Gurhan, I., Mohapatra, R.N.: Approximation properties by q-Durrmeyer–Stancu operators. Anal. Theory Appl. 29(4), 373–383 (2013)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Hounkonnou, M.N., Kyemba, J.D.B.: \(\mathscr {R}\)(p, q)-calculus: differentiation and integration. SUT J. Math. 49(2), 145–167 (2013)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Khan, K., Lobiyal, D.: Bèzier curves based on Lupaş (p, q)-analogue of Bernstein functions in CAGD. J. Comput. Appl. Math. 317, 458–477 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lupaş, A.: A q-analogue of the Bernstein operator. Semin. Numer. Stat. Calc. 9, 85–92 (1987)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Milovanović, G.V., Gupta, V., Malik, N.: (p, q)-Beta functions and applications in approximation. Boletín de la Sociedad Matemática Mexicana 24(1), 219–237 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Mursaleen, M., Ansari, K.J., Khan, A.: On \((p, q)\)-analogue of Bernstein operators. Appl. Math. Comput. 266, 874–882 (2015)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Mursaleen, M., Ansari, K.J., Khan, A.: Some approximation results by \((p, q)\)-analogue of Bernstein–Stancu operators. Appl. Math. Comput. 264, 392–402 (2015)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Mursaleen, M., Nasiruzzaman, M., Khan, A., Ansari, K.J.: Some approximation results on Bleimann–Butzer–Hahn operators defined by \((p, q)\)-integers. Filomat 30(3), 639–648 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Örkcü, M., Doğru, O.: Weighted statistical approximation by Kantorovich type q-Szász–Mirakjan operators. Appl. Math. Comput. 217(20), 7913–7919 (2011)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Oruç, H., Phillips, G.M.: q-Bernstein polynomials and bézier curves. J. Comput. Appl. Math. 151(1), 1–12 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Sadjang, P.N.: On the fundamental theorem of \((p, q) \)-calculus and some \((p, q)\)-Taylor formulas. Results Math. 73(1), 39 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Yuksel, I., Ispir, N.: Weighted approximation by a certain family of summation integral-type operators. Comput. Math. Appl. 52(10), 1463–1470 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2019

Authors and Affiliations

  1. 1.Mathematics Department, Arts and Science FacultyKırıkkale UniversityYahşihanTurkey
  2. 2.Computer Engineering Department, Engineering FacultyKırıkkale UniversityYahşihanTurkey

Personalised recommendations